Comparison of Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of Hydro-Methanolic Extracts Derived from Dried Noni (Morinda citrifolia L.) Fruits and Seeds Growing in Sri Lanka †
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayaweera, D.M.A. (Indigenous and Exotic) Used in Ceylon—Part III. In The National Science Council of Sri Lanka; The National Science Council of Sri Lanka: Colombo, Sri Lanka, 1982; pp. 281–285. [Google Scholar]
- Chan-Blanco, Y.; Vaillant, F.; Perez, A.M.; Reynes, M.; Brillouet, J.M.; Brat, P. The noni fruit (Morinda citrifolia L.): A review of agricultural research, nutritional and therapeutic properties. J. Food Compos. Anal. 2006, 19, 645–654. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.S.; Park, M.K.; Bang, O.S. Genotoxicity Comparison between Morinda citrifolia Fruit and Seed Substances. Foods 2022, 11, 1773. [Google Scholar] [CrossRef] [PubMed]
- Kulathunga, S.; Arawwawala, L.D. Morinda citrifolia Linn Grown in Sri Lanka: Shelf Life of Fruit Juice. Am. J. Ethnomed. 2017, 4, 18. [Google Scholar] [CrossRef]
- Assanga, S.I.; Luján, L.L.; Rivera-Castañeda, E.; Gil-Salido, A.; Acosta-Silva, A.; Rubio-Pino, J. Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change). Afr. J. Biotechnol. 2016, 12, 4630–4639. [Google Scholar] [CrossRef]
- Ali, M.; Kenganora, M.; Manjula, S.N. Health benefits of Morinda citrifolia (Noni): A review. Pharmacogn. J. 2016, 8, 321–334. [Google Scholar] [CrossRef]
- EU SCF (Scientific Committee on Food). Opinion of the Scientific Committee on Food on Tahitian Noni ® Juice. SCF/CS/NF/DOS/18 ADD 2 Final. December 2002; pp. 1–68. Available online: http://europa.eu.int/comm/food/fs/sc/scf/out151_en.pdf. (accessed on 8 April 2023).
- West, B.J.; Jarakae Jensen, C.; Westendorf, J. A new vegetable oil from noni (Morinda citrifolia) seeds. Int. J. Food Sci. Technol. 2008, 43, 1988–1992. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Patricia, M.; Shihabul, A.; Norazlina, M.R.; George, M.R.R.; Noorakmar, W.; Lee, J.S.; Jumardi, R.; Jinap, S.; Zaidul, I.S.M. Food Bioscience A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Biosci. 2021, 41, 101000. [Google Scholar] [CrossRef]
- Palu, A.K.; West, B.J.; Jensen, C.J. Noni Seed Oil Topical Safety, Efficacy, and Potential Mechanisms of Action. J. Cosmet. Dermatol. Sci. Appl. 2012, 02, 74–78. [Google Scholar] [CrossRef]
- West, B.J.; Jarakae Jensen, C.; PaIu, A.K.; Deng, S. Toxicity and antioxidant tests of Morinda citrifolia (Noni) seed extract. Adv. J. Food Sci. Technol. 2011, 3, 303–307. Available online: http://maxwellsci.com/print/ajfst/v3-303-307.pdf (accessed on 8 April 2023).
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Gunathilake, K.D.; Ranaweera, K.K.; Rupasinghe, H.P. Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem. 2018, 245, 371–379. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Janarny, G.; Ranaweera, K.K.; Gunathilake, K.D. Optimization of ethanol-based extraction of phenolic compounds from edible flowers of Cassia auriculata. J. Mater. Environ. Sci. 2022, 13, 640–654. Available online: http://www.jmaterenvironsci.com (accessed on 12 April 2023).
- Kumari, G.U.; Gunathilake, K.D. In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). J. Food Biochem. 2020, 44, e13499. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.P. UV Spectroscopic Method for Determination of Vitamin C (Ascorbic Acid) Content in Different Fruits in South Gujarat Region. Int. J. Environ. Sci. Nat. Resour. 2019, 22, 41–44. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E1. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Payum, T.; Das, A.K.; Shankar, R.; Tamuly, C.; Hazarika, M. Folk Use and Antioxidant Potential Determination of Zanthoxylum Rhetsa Dc. Shoot-a Highly Utilized Hot Spice Folk Vegetable of Arunachal Pradesh, India. Int. J. Pharm. Sci. Res. 2013, 4, 4597–4602. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Tripathy, B.C. Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol. 1992, 98, 7–11. [Google Scholar] [CrossRef]
- Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical’s, and singlet oxygen. J. Agric. Food Chem. 2000, 48, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.; Rupasinghe, H.V. Optimization of Water Based-extraction Methods for the Preparation of Bioactive-rich Ginger Extract Using Response Surface Methodology. Eur. J. Med. Plants 2014, 4, 893–906. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16 (Suppl. S1), 185. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, S.B.; Lee, H.S.; Lee, S.Y.; Baek, J.S.; Kim, D.; Moon, T.W.; Robyt, J.F.; Park, K.H. Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch. Biochem. Biophys. 1999, 371, 277–283. [Google Scholar] [CrossRef]
- Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N.; Iputo, J.E. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res. 2010, 4, 789–795. [Google Scholar] [CrossRef]
- Samarasinghe, H.G.; Illeperuma, D.C.; Gunathilake, K.D. Evaluation of antioxidant, anti-inflammatory and anti-diabetic properties of noni fruit (Morinda citrifolia L.) and its simulated gastrointestinal digesta fractions. J. Food Bioprocess Eng. 2023, 6, 59–68. [Google Scholar]
- Sakat, S.S.; Juvekar, A.R.; Gambhire, M.N. In-vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Samad, N.B.; Debnath, T.; Ye, M.; Hasnat, M.A.; Lim, B.O. In vitro antioxidant and anti-inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pac. J. Trop. Biomed. 2014, 4, 807–815. [Google Scholar] [CrossRef]
- Rajan, N.S.; Bhat, R. Bioactive Compounds of Plum Mango (Bouea Microphylla Griffith). In Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarasinghe, H.G.A.S.; Gunathilake, K.D.P.P.; Illeperuma, D.C.K. Comparison of Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of Hydro-Methanolic Extracts Derived from Dried Noni (Morinda citrifolia L.) Fruits and Seeds Growing in Sri Lanka. Biol. Life Sci. Forum 2023, 29, 15. https://doi.org/10.3390/IECN2023-15529
Samarasinghe HGAS, Gunathilake KDPP, Illeperuma DCK. Comparison of Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of Hydro-Methanolic Extracts Derived from Dried Noni (Morinda citrifolia L.) Fruits and Seeds Growing in Sri Lanka. Biology and Life Sciences Forum. 2023; 29(1):15. https://doi.org/10.3390/IECN2023-15529
Chicago/Turabian StyleSamarasinghe, Haththotuwa Gamage Amal Sudaraka, Katugampalage Don Prasanna Priyantha Gunathilake, and Dona Chamara Kumari Illeperuma. 2023. "Comparison of Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of Hydro-Methanolic Extracts Derived from Dried Noni (Morinda citrifolia L.) Fruits and Seeds Growing in Sri Lanka" Biology and Life Sciences Forum 29, no. 1: 15. https://doi.org/10.3390/IECN2023-15529
APA StyleSamarasinghe, H. G. A. S., Gunathilake, K. D. P. P., & Illeperuma, D. C. K. (2023). Comparison of Antioxidant, Anti-Inflammatory, and Antidiabetic Potential of Hydro-Methanolic Extracts Derived from Dried Noni (Morinda citrifolia L.) Fruits and Seeds Growing in Sri Lanka. Biology and Life Sciences Forum, 29(1), 15. https://doi.org/10.3390/IECN2023-15529