Nanocellulose and Its Application in the Food Industry †
Abstract
:1. Introduction
2. Lignocellulosic Waste
3. Characterization of Cellulose Nanostructures
4. Nanocellulose in Food
5. Nanocellulose as Reinforcement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Atiqah, A.; Ansari, M.N.M.; Norrrahim, M.N.F. Production, processes and modification of nanocrystalline cellulose from agro-waste: A review. In Nanocrystalline Materials; IntechOpen: London, UK, 2019; pp. 3–32. [Google Scholar]
- Omran, A.A.B.; Mohammed, A.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Rahimian Koloor, S.S.; Petrů, M. Micro-and nanocellulose in polymer composite materials: A review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef] [PubMed]
- Chaker, A.; Mutjé, P.; Vilar, M.R.; Boufi, S. Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 2014, 21, 4247–4259. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef]
- Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2019, 267, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.E. Microfibrillated Cellulose and High-Value Chemicals from Orange Peel Residues. Ph.D. Thesis, University of York, York, UK, 2018. [Google Scholar]
- Alemán-Nava, G.S.; Gatti, I.A.; Parra-Saldivar, R.; Dallemand, J.F.; Rittmann, B.E.; Iqbal, H.M. Biotechnological revalorization of Tequila waste and by-product streams for cleaner production–A review from bio-refinery perspective. J. Clean. Prod. 2018, 172, 3713–3720. [Google Scholar] [CrossRef]
- Hernández, J.A.; Romero, V.H.; Escalante, A.; Toríz, G.; Rojas, O.J.; Sulbarán, B.C. Agave tequilana bagasse as source of cellulose nanocrystals via organosolv treatment. Bioresources 2018, 13, 3603–3614. [Google Scholar] [CrossRef]
- Robles-García, M.Á.; Del-Toro-Sánchez, C.L.; Márquez-Ríos, E.; Barrera-Rodríguez, A.; Aguilar, J.; Aguilar, J.; Reynoso-Marín, F.J.; Ceja, I.; Dorame-Miranda, R.; Rodríguez-Félix, F. Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: Preparation and characterization. Carbohydr. Polym. 2018, 192, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Iñiguez-Covarrubias, G.; Lange, S.E.; Rowell, R.M. Utilization of byproducts from the tequila industry: Part 1: Agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour. Technol. 2001, 77, 25–32. [Google Scholar] [CrossRef]
- Zamora Natera, F.; Ruiz López, M.A.; García López, P.M.; Rodríguez Macías, R.; Iñiguez Covarrubias, G.; Salcedo Pérez, E.; Alcantar González, E.G. Caracterización física y química de sustratos agrícolas a partir de bagazo de agave tequilero. Interciencia 2010, 35, 515–520. Available online: https://www.interciencia.net/wp-content/uploads/2018/01/515-c-RODR%C3%8DGUEZ-MAC%C3%8DAS-7.pdf (accessed on 12 May 2023).
- Gobeille, A.; Yavitt, J.; Stalcup, P.; Valenzuela, A. Effects of soil management practices on soil fertility measurements on Agave tequilana plantations in Western Central Mexico. Soil Tillage Res. 2006, 87, 80–88. [Google Scholar] [CrossRef]
- Zurita, F.; Tejeda, A.; Montoya, A.; Carrillo, I.; Sulbarán-Rangel, B.; Carreón-Álvarez, A. Generation of tequila vinasses, characterization, current disposal practices and study cases of disposal methods. Water 2022, 14, 1395. [Google Scholar] [CrossRef]
- Palacios Hinestroza, H.; Hernández Diaz, J.A.; Esquivel Alfaro, M.; Toriz, G.; Rojas, O.J.; Sulbarán-Rangel, B.C. Isolation and Characterization of Nanofibrillar Cellulose from Agave tequilana Weber Bagasse. Adv. Mater. Sci. Eng. 2019, 2019, 1342547. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Valdez-Fausto, E.M.; Rentería-Urquiza, M.; Jiménez-Amezcua, R.M.; Anzaldo Hernández, J.; Torres-Rendon, J.G.; García Enriquez, S. Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydr. Polym. 2018, 201, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Franco, T.S.; Potulski, D.C.; Viana, L.C.; Forville, E.; de Andrade, A.S.; de Muniz, G.I.B. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr. Polym. 2019, 218, 8–19. [Google Scholar] [CrossRef]
- Franco, T.S.; Rodríguez, D.C.M.; Soto, M.F.J.; Amezcua, R.M.J.; Urquíza, M.R.; Mijares, E.M.; de Muniz, G.I.B. Production and technological characteristics of avocado oil emulsions stabilized with cellulose nanofibrils isolated from agroindustrial residues. Colloids Surf. A Physicochem. Eng. Aspects 2020, 586, 124263. [Google Scholar] [CrossRef]
- Huang, J.; Ma, X.; Yang, G.; Alain, D. Introduction to nanocellulose. In Nanocellulose: From Fundamentals to Advanced Materials; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Riva, G.H.; Silva, J.A.; Navarro, F.; López-Dellamary, F.; Robledo, J.R. Síntesis de nanocompuestos de celulosa para aplicaciones biomédicas en base a sus propiedades mecánicas. Rev. Iberoam. De Polímeros 2014, 15, 275–285. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=4801443 (accessed on 5 June 2023).
- Carchi Maurat, D.E. Aprovechamiento de los Residuos Agrícolas Provenientes del Cultivo de Banano para Obtener Nanocelulosa. Bachelor’s Thesis, University of Cuenca, Cuenca, Ecuador, 2014. [Google Scholar]
- Siqueira, G.; Bras, J.; Dufresne, A. Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 2009, 10, 425–432. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Rojas, O.J.; Lucia, L.A.; Sain, M. Cellulosic nanocomposites: A review. Bioresources 2008, 3, 929–980. [Google Scholar]
- Saïd Azizi Samir, M.A.; Alloin, F.; Paillet, M.; Dufresne, A. Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 2004, 37, 4313–4316. [Google Scholar] [CrossRef]
- Koyama, S.; Haniu, H.; Osaka, K.; Koyama, H.; Kuroiwa, N.; Endo, M.; Hayashi, T. Medical Application of Carbon-Nanotube-Filled Nanocomposites: The Microcatheter. Small 2006, 2, 1406–1411. [Google Scholar] [CrossRef]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Gardner, D.J.; Oporto, G.S.; Mills, R.; Samir, M.A.S.A. Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 2008, 22, 545–567. [Google Scholar] [CrossRef]
- de Santayana, M.D.C.P. Nanotecnología y Alimentación. Ph.D. Thesis, Universidad Complutense. 2018. Available online: http://147.96.70.122/Web/TFG/TFG/Memoria/MARIA%20DEL%20CARMEN%20PARDO%20DE%20SANTAYANA%20DE%20PABLO.pdf (accessed on 21 June 2023).
- Méndez, N.K.C. Tendencias investigativas de la nanotecnología en empaques y envases para alimentos. Rev. Lasallista De Investig. 2014, 11, 18–28. [Google Scholar]
- RIKILT and JRC. Inventory of Nanotechnology Applications in the Agricultural, Feed and Food Sector. EFSA Supporting Publication. 2014. Available online: https://www.efsa.europa.eu/en/supporting/pub/en-621 (accessed on 12 May 2023).
- Cozmuta, A.M.; Peter, A.; Cozmuta, L.M.; Nicula, C.; Crisan, L.; Baia, L. Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Packag. Technol. Sci. 2015, 28, 271–284. [Google Scholar] [CrossRef]
- Rosales, R.P.; Rodríguez, S.V.; Ramírez, R.C. El aceite de aguacate y sus propiedades nutricionales. e-Gnosis 2005, 3, 1–11. [Google Scholar]
- ANIAME. El aceite de Aguacate en México. Rev. ANIAME 2002, 8, 1–9. [Google Scholar]
- Mataix, J.; Gil, A. Lípidos Alimentarios. Libro Blanco de los Omega-3. Los Ácidos Grasos Poliinsaturados Omega-3 y Monoinsaturados tipo Oleico y su Papel en la Salud; Editorial Puleva; Instituto Omega: Granada, Spain, 2002; pp. 13–33. [Google Scholar]
- Romero, R.A.; Bustamante, A.H.; Dávila, F.R.; Rodríguez, C.J.; Sánchez, N.A.; Rouzaud, S.O.; Canizales, R.D.F.; Otero, L.C.B.; Sánchez, M.R.I. Elaboración de sucedáneo saludable de mayonesa a base de aguacate (Persea americana) utilizando aislado de proteína de soya (Glycine max) como emulsificante. Investig. Desarro. Cienc. Tecnol. Aliment. 2016, 1, 591–597. [Google Scholar]
- Durán Paz, S. Desarrollo de emulsiones a base de agentes antifúngicos con aceites esenciales, para reducir la incidencia del Stem-End Rot en frutas: Evaluación en aguacate hass. Bachelor’s Thesis, Universidad de los Andes, Cundinamarca, Colombia, 2020. [Google Scholar]
- Echeverri Romero, A.; Flórez Bulla, V. Elaboración y caracterización de una salsa vegana tipo mayonesa a base de aceite de aguacate Hass y aceite de semilla de Sacha Inchi. Bachelor’s Thesis, Universidad de los Andes, Cundinamarca, Colombia, 2022. [Google Scholar]
- Pathakoti, K.; Manubolu, M.; Hwang, H. Nanostructures: Current uses and future applications in food science. J. Food Drug Anal. 2017, 25, 245–253. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-evaluation of sorbitan monostearate (E 491), sorbitan tristearate (E 492), sorbitan monolaurate (E 493), sorbitan monooleate (E 494) and sorbitan monopalmitate (E 495) when used as food additives. EFSA J. 2017, 15, e04788. [Google Scholar] [CrossRef]
- Roohani, M.; Habibi, Y.; Belgacem, N.M.; Ebrahim, G.; Karimi, A.N.; Dufresne, A. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 2008, 44, 2489–2498. [Google Scholar] [CrossRef]
- Cao, X.; Xu, C.; Wang, Y.; Liu, Y.; Liu, Y.; Chen, Y. New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym. Test. 2013, 32, 819–826. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020, 16, 500–503. [Google Scholar] [CrossRef]
- Mahendra, I.P.; Wirjosentono, B.; Tamrin, T.; Ismail, H.; Mendez, J.A.; Causin, V. The effect of nanocrystalline cellulose and TEMPO-oxidized nanocellulose on the compatibility of polypropylene/cyclic natural rubber blends. J. Thermoplast. Compos. Mater. 2022, 35, 2146–2161. [Google Scholar] [CrossRef]
- Jain, M.; Pradhan, M.K. Morphology and mechanical properties of sisal fiber and nano cellulose green rubber composite: A comparative study. Int. J. Plast. Technol. 2016, 20, 378–400. [Google Scholar] [CrossRef]
- Dasso, G. PLA/nanocelulosa: Nanobiomateriales para Envases. Bachelor’s Thesis, Universidad Nacional de Mar de plata, Mar del Plata, Argentina, 2017. [Google Scholar]
- Pech-Cohuo, S.C.; Canche-Escamilla, G.; Valadez-González, A.; Fernández-Escamilla, V.V.; Uribe-Calderon, J. Production and Modification of Cellulose Nanocrystals from Agave tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. Int. J. Polym. Sci. 2018, 2018, 3567901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, T.S.; de Muniz, G.B.; Lomelí-Ramírez, M.G.; Rangel, B.S.; Jiménez-Amezcua, R.M.; Mijares, E.M.; García-Enríquez, S.; Rentería-Urquiza, M. Nanocellulose and Its Application in the Food Industry. Biol. Life Sci. Forum 2023, 28, 2. https://doi.org/10.3390/blsf2023028002
Franco TS, de Muniz GB, Lomelí-Ramírez MG, Rangel BS, Jiménez-Amezcua RM, Mijares EM, García-Enríquez S, Rentería-Urquiza M. Nanocellulose and Its Application in the Food Industry. Biology and Life Sciences Forum. 2023; 28(1):2. https://doi.org/10.3390/blsf2023028002
Chicago/Turabian StyleFranco, Talita Szlapak, Graciela Boltzon de Muniz, María Guadalupe Lomelí-Ramírez, Belkis Sulbarán Rangel, Rosa María Jiménez-Amezcua, Eduardo Mendizábal Mijares, Salvador García-Enríquez, and Maite Rentería-Urquiza. 2023. "Nanocellulose and Its Application in the Food Industry" Biology and Life Sciences Forum 28, no. 1: 2. https://doi.org/10.3390/blsf2023028002
APA StyleFranco, T. S., de Muniz, G. B., Lomelí-Ramírez, M. G., Rangel, B. S., Jiménez-Amezcua, R. M., Mijares, E. M., García-Enríquez, S., & Rentería-Urquiza, M. (2023). Nanocellulose and Its Application in the Food Industry. Biology and Life Sciences Forum, 28(1), 2. https://doi.org/10.3390/blsf2023028002