Biofilms Functionalized Based on Bioactives and Nanoparticles with Fungistatic and Bacteriostatic Properties for Food Packing Uses †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVA Films
2.3. Films Characterization
2.3.1. Scanning Electron Microscopy
2.3.2. Fourier-Transform Infrared Spectroscopy
2.3.3. Thermogravimetric Analysis
2.3.4. Differential Scanning Calorimetry
2.4. Determination of Control of Environmental Microorganisms
2.4.1. Determination of Bacteriostatic Activity against Lactobacillus
2.4.2. Determination of Bacteriostatic Activity against Salmonella gallinarum
2.4.3. Determination of Fungistatic Activity against Penicillium
3. Results and Discussion
3.1. Films Characterization
3.1.1. Fourier Transform Infrared Spectroscopy Analysis
3.1.2. Thermogravimetric Analysis
3.1.3. Differential Scanning Calorimetry
3.2. Fungistatic and Bacteriostatic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopretti, M.; Lecot, N.; Rodriguez, A.; Lluberas, G.; Orozco, F.; Bolaños, L.; Montes De Oca, G.; Cerecetto, H.; Vega-Baudrit, J. Biorefinery of rice husk to obtain functionalized bioactive compounds. J. Renew. Mater. 2019, 7, 313–324. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Liangpanth, M.; Luesuwan, S.; Kraisitthisirintr, R.; Ngiwngam, K.; Rawdkuen, S.; Rachtanapun, P.; Karbowiak, T.; Tongdeesoontorn, W. Preparation and characterization of bioactive chitosan film loaded with cashew (Anacardium occidentale) leaf extract. Polymers 2022, 14, 540. [Google Scholar] [CrossRef] [PubMed]
- Kochkina, N.E.; Lukin, N.D. Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. Int. J. Biol. Macromol. 2020, 157, 377–384. [Google Scholar] [CrossRef]
- Rafique, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan functionalized poly(Vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol. 2016, 87, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Tharanathan, R.N. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of protein-based films and coatings for food packaging: A review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef]
- Annu; Ali, A.; Ahmed, S. Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. Heliyon 2021, 7, e06550. [Google Scholar] [CrossRef]
- DeButts, B.L.; Spivey, C.R.; Barone, J.R. Wheat gluten aggregates as a reinforcement for poly(Vinyl alcohol) films. ACS Sustain. Chem. Eng. 2018, 6, 2422–2430. [Google Scholar] [CrossRef]
- García-Hernández, A.; Morales-Sánchez, E.; Berdeja-Martínez, B.; Escamilla-García, M.; Salgado-Cruz Ma Rentería-Ortega, M.; Farrera-Rebollo, R.; Vega-Cuellar, M.; Calderón-Domínguez, G. Pva-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of hypericum perforatum for potential use as wound dressing: Fabrication and characterization. Polymers 2022, 14, 1981. [Google Scholar] [CrossRef]
- Damayanti, R.; Tamrin; Alfian, Z.; Eddyanto, E. Preparation film gelatin PVA/gelatin and characterization mechanical properties. AIP Conf. Proc. 2021, 2342, 060004. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Chabook, N.; Rostami, O.; Heydari, M.; Kolahdouz-Nasiri, A.; Javanmardi, F.; Abdolmaleki, K.; Mousavi Khaneghah, A. PVA/starch films: An updated review of their preparation, characterization, and diverse applications in the food industry. Polym. Test. 2023, 118, 107903. [Google Scholar] [CrossRef]
- Vázquez-Luna, A.; Santiago, M.; Rivadeneyra-Domínguez, E.; Díaz-Sobac, R. Películas comestibles a base de almidón nanoestructurado como material de barrera a la humedad. CienciaUAT 2019, 13, 152. [Google Scholar] [CrossRef]
- Dey, D.; Dharini, V.; Periyar Selvam, S.; Rotimi Sadiku, E.; Mahesh Kumar, M.; Jayaramudu, J.; Nath Gupta, U. Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Mater. Today Proc. 2021, 38, 860–869. [Google Scholar] [CrossRef]
- Souza VG, L.; Alves, M.M.; Santos, C.F.; Ribeiro IA, C.; Rodrigues, C.; Coelhoso, I.; Fernando, A.L. Biodegradable chitosan films with zno nanoparticles synthesized using food industry by-products—Production and characterization. Coatings 2021, 11, 646. [Google Scholar] [CrossRef]
- Sayadi, M.; Mojaddar Langroodi, A.; Amiri, S.; Radi, M. Effect of nanocomposite alginate-based film incorporated with cumin essential oil and TiO 2 nanoparticles on chemical, microbial, and sensory properties of fresh meat/beef. Food Sci. Nutr. 2022, 10, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.; Almeida, A. Metallic nanoparticles in the food sector: A mini-review. Foods 2022, 11, 402. [Google Scholar] [CrossRef]
- Gómez León, M.M.; Román Mendoza, L.E.; Castro Basurto, F.V.; Maúrtua Torres, D.J.; Condori, C.; Vivas, D.; Bianchi, A.E.; Paraguay Delgado, F.; Solís Veliz, J.L. Nanopartículas de CuO y su propiedad antimicrobiana en cepas intrahospitalarias. Rev. Colomb. De Química 2017, 46, 28–36. [Google Scholar] [CrossRef]
- Fernández-León, K.J.; Rodríguez-Díaz, J.A.; Reyes-Espinosa, L.; Duquesne-Alderete, A.; Solenzal-Valdivia, Y.O.; Rives-Quintero, A.; Hernández-García, J.E. Comparison of in vitro anti- Staphylococcus aureus activity of eight antibiotics and four dilutions of propolis. J. Selva Andin. Res. Soc. 2022, 13, 35–48. [Google Scholar] [CrossRef]
- Abud Blanco, K.; Bustos Blanco, L.; Covo Morales, E.; Fang Mercado, L.C. Actividad antimicrobiana in vitro de compuestos fenólicos sulfonados en cavidad oral. Cienc. Y Salud Virtual 2015, 7, 53. [Google Scholar] [CrossRef]
- Heredia-Castro, P.Y.; García-Baldenegro, C.V.; Santos-Espinosa, A.; de Jesús Tolano-Villaverde, J.; Manzanarez-Quin, C.G.; Valdez-Domínguez, R.D.; Ibarra-Zazueta, C.; Osuna-Chávez, R.F.; Rueda-Puente, E.O.; Hernández-Moreno, C.G.; et al. Perfil fitoquímico, actividad antimicrobiana y antioxidante de extractos de Gnaphalium oxyphyllum y Euphorbia maculata nativas de Sonora, México. Rev. Mex. Cienc. Pecu. 2022, 13, 928–942. [Google Scholar] [CrossRef]
- Correa, M.L.; Alfaro, M.E.; Carballo, S.M.; Ureña, Y.C.; Vega-Baudrit, J. Estudio preliminar de la obtención de compuestos híbridos de quitosano y polifenoles derivados de lignina a partir de subproductos agropecuarios y pesquería de camarón. Rev. Científica 2017, 27, 33–43. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Massana Roquero, D.; Bollella, P.; Katz, E.; Melman, A. Controlling porosity of calcium alginate hydrogels by interpenetrating polyvinyl alcohol–diboronate polymer network. ACS Appl. Polym. Mater. 2021, 3, 1499–1507. [Google Scholar] [CrossRef]
- Luque, G.C.; Picchio, M.L.; Martins, A.P.S.; Dominguez-Alfaro, A.; Tomé, L.C.; Mecerreyes, D.; Minari, R.J. Elastic and thermoreversible iongels by supramolecular pva/phenol interactions. Macromol. Biosci. 2020, 20, 2000119. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Bharimalla, A.K.; Mahapatra, A.; Dhakane-Lad, J.; Arputharaj, A.; Kumar, M.; Raja AS, M.; Kambli, N. Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Biosci. 2021, 44, 101352. [Google Scholar] [CrossRef]
- Olewnik-Kruszkowska, E.; Gierszewska, M.; Jakubowska, E.; Tarach, I.; Sedlarik, V.; Pummerova, M. Antibacterial films based on pva and pva–chitosan modified with poly(Hexamethylene guanidine). Polymers 2019, 11, 2093. [Google Scholar] [CrossRef]
- Abral, H.; Ikhsan, M.; Rahmadiawan, D.; Handayani, D.; Sandrawati, N.; Sugiarti, E.; Muslimin, A.N. Anti-UV, antibacterial, strong, and high thermal resistant polyvinyl alcohol/Uncaria gambir extract biocomposite film. J. Mater. Res. Technol. 2022, 17, 2193–2202. [Google Scholar] [CrossRef]
- Aslam, M.; Raza, Z.A.; Siddique, A. Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polym. Bull. 2021, 78, 1955–1965. [Google Scholar] [CrossRef]
- Mansur, H.S.; Oréfice, R.L.; Mansur, A.A.P. Characterization of poly(Vinyl alcohol)/poly(Ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Okahisa, Y.; Matsuoka, K.; Yamada, K.; Wataoka, I. Comparison of polyvinyl alcohol films reinforced with cellulose nanofibers derived from oil palm by impregnating and casting methods. Carbohydr. Polym. 2020, 250, 116907. [Google Scholar] [CrossRef]
- Yasmeen, S.; Kabiraz, M.; Saha, B.; Qadir, M.; Gafur, M.; Masum, S. Chromium (Vi) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int. Res. J. Pure Appl. Chem. 2016, 10, 1–14. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głąb, M.; Kędzierska, M.; Jaromin, A.; Mierzwiński, D.; Tyliszczak, B. Physicochemical investigations of chitosan-based hydrogels containing aloe vera designed for biomedical use. Materials 2020, 13, 3073. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Shalan, A.E.; Sabaa, M.W.; Mohamed, R.R. One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv. 2022, 12, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, R.; Gupta, V.; Kumar, P.; Kumar, A.; Singh, S.; Gaikwad, K.K. Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. Int. J. Biol. Macromol. 2021, 185, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Gasti, T.; Hiremani, V.D.; Kesti, S.S.; Vanjeri, V.N.; Goudar, N.; Masti, S.P.; Thimmappa, S.C.; Chougale, R.B. Physicochemical and antibacterial evaluation of poly (Vinyl alcohol)/guar gum/silver nanocomposite films for food packaging applications. J. Polym. Environ. 2021, 29, 3347–3363. [Google Scholar] [CrossRef]
- Yang, W.; Ding, H.; Qi, G.; Li, C.; Xu, P.; Zheng, T.; Zhu, X.; Kenny, J.M.; Puglia, D.; Ma, P. Highly transparent PVA/nanolignin composite films with excellent UV shielding, antibacterial and antioxidant performance. React. Funct. Polym. 2021, 162, 104873. [Google Scholar] [CrossRef]
- Remiš, T.; Bělský, P.; Kovářík, T.; Kadlec, J.; Ghafouri Azar, M.; Medlín, R.; Vavruňková, V.; Deshmukh, K.; Sadasivuni, K.K. Study on structure, thermal behavior, and viscoelastic properties of nanodiamond-reinforced poly (Vinyl alcohol) nanocomposites. Polymers 2021, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Silva, L.; Víctor-Román, S.; Romero, A.; Gracia, I.; Valverde, J.L. Tailor-made aerogels based on carbon nanofibers by freeze-drying. Sci. Adv. Mater. 2014, 6, 665–673. [Google Scholar] [CrossRef]
- Bueno, J.N.N.; Corradini, E.; de Souza, P.R.; Marques, V.d.S.; Radovanovic, E.; Muniz, E.C. Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application. Polym. Test. 2021, 101, 107279. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Pudake, R.N.; Shrivastav, B.R.; Shrivastav, A. Antibacterial activity of poly (Vinyl alcohol)—Biogenic silver nanocomposite film for food packaging material. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 025020. [Google Scholar] [CrossRef]
- Ali, H.; Tiama, T.M.; Ismail, A.M. New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. Int. J. Biol. Macromol. 2021, 186, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Martínez Ferrer, M. Uso de Nuevos Materiales Antimicrobianos Sostenibles Para Envasado Alimentario [Proyecto/Trabajo fin de Carrera/Grado, Universitat Politècnica de València]. 2022. Available online: https://riunet.upv.es/handle/10251/185512 (accessed on 1 July 2022).
- Montes Hernández, A.I.; Oropeza González, R.A.; Padrón Pereira, C.A.; Araya Quesada, Y.M.; Wexler Goering, L.M.; Cubero Castillo, E.M. Películas biodegradables con propiedades bioactivas. Rev. Venez. Cienc. Y Tecnol. Aliment. 2017, 8, 057–089. Available online: https://kerwa.ucr.ac.cr/handle/10669/79335 (accessed on 3 July 2020).
- Ucak, I.; Khalily, R.; Carrillo, C.; Tomasevic, I.; Barba, F.J. Potential of propolis extract as a natural antioxidant and antimicrobial in gelatin films applied to rainbow trout (Oncorhynchus mykiss) fillets. Foods 2020, 9, 1584. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liu, M.; Fu, Y.; Zhang, J.; Liu, W.; Li, J.; Li, X.; Li, Y.; Wang, T. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb. Pathog. 2020, 142, 104056. [Google Scholar] [CrossRef] [PubMed]
Codes | Description |
---|---|
PVA | PVA film = control |
PVA-PH | PVA film with 0.05 mg/mL of phenols |
PVA-CH-PH | PVA film with 0.025 mg/mL of chitosan and 0.05 mg/mL of phenols |
PVA-AgNPs | PVA film with 0.025 mg/mL and 0.05 mg/mL of AgNPs |
PVA-CuNPs | PVA film with 0.025 mg/mL of CuNPs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lluberas, G.; Batista-Menezes, D.; Zuñiga-Umaña, J.M.; Montes de Oca-Vásquez, G.; Lecot, N.; Vega-Baudrit, J.R.; Lopretti, M. Biofilms Functionalized Based on Bioactives and Nanoparticles with Fungistatic and Bacteriostatic Properties for Food Packing Uses. Biol. Life Sci. Forum 2023, 28, 10. https://doi.org/10.3390/blsf2023028010
Lluberas G, Batista-Menezes D, Zuñiga-Umaña JM, Montes de Oca-Vásquez G, Lecot N, Vega-Baudrit JR, Lopretti M. Biofilms Functionalized Based on Bioactives and Nanoparticles with Fungistatic and Bacteriostatic Properties for Food Packing Uses. Biology and Life Sciences Forum. 2023; 28(1):10. https://doi.org/10.3390/blsf2023028010
Chicago/Turabian StyleLluberas, Gabriela, Diego Batista-Menezes, Juan Miguel Zuñiga-Umaña, Gabriela Montes de Oca-Vásquez, Nicole Lecot, José Roberto Vega-Baudrit, and Mary Lopretti. 2023. "Biofilms Functionalized Based on Bioactives and Nanoparticles with Fungistatic and Bacteriostatic Properties for Food Packing Uses" Biology and Life Sciences Forum 28, no. 1: 10. https://doi.org/10.3390/blsf2023028010
APA StyleLluberas, G., Batista-Menezes, D., Zuñiga-Umaña, J. M., Montes de Oca-Vásquez, G., Lecot, N., Vega-Baudrit, J. R., & Lopretti, M. (2023). Biofilms Functionalized Based on Bioactives and Nanoparticles with Fungistatic and Bacteriostatic Properties for Food Packing Uses. Biology and Life Sciences Forum, 28(1), 10. https://doi.org/10.3390/blsf2023028010