Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review †
Abstract
:1. Introduction
2. Influence of Inulin on Technological and Nutritional Properties of Pasta and Human Health
2.1. Technological Properties
2.2. Nutritional Properties and Human Health
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mudannayake, D.C.; Jayasena, D.D.; Wimalasiri, K.M.S.; Ranadheera, C.S.; Ajlouni, S. Inulin fructans–food applications and alternative plant sources: A review. Int. J. Food Sci. Technol. 2022, 57, 5764–5780. [Google Scholar] [CrossRef]
- Du, M.; Cheng, X.; Qian, L.; Huo, A.; Chen, J.; Sun, Y. Extraction, physicochemical properties, functional activities and applications of inulin polysaccharide: A review. Plant Foods Hum. Nutr. 2023, 78, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Teferra, T.F. Possible actions of inulin as prebiotic polysaccharide: A review. Food Front. 2021, 2, 407–416. [Google Scholar] [CrossRef]
- Jackson, P.P.J.; Wijeyesekera, A.; Rastall, R.A. Inulin-type fructans and short-chain fructooligosaccharides—Their role within the food industry as fat and sugar replacers and texture modifiers—What needs to be considered! Food Sci. Nutr. 2023, 11, 17–28. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Iannetti, M.; Civica, V.; Sepielli, G.; Del Nobile, M.A. Effect of the inulin addition on the properties of gluten free pasta. Food Nutr. Sci. 2012, 3, 22–27. [Google Scholar] [CrossRef]
- Nechaev, A.P.; Tsyganova, T.B.; Butova, S.N.; Nikolaeva, J.V.; Tarasova, V.V.; Smirnov, D.A. Development of a new generation instant pasta based on gluten-free raw materials and dietary fiber. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022006. [Google Scholar] [CrossRef]
- Göksel Saraç, M. Evaluation of non-starch polysaccharide addition in Turkish noodles: ELECTRE techniques approach. J. Texture Stud. 2021, 52, 368–379. [Google Scholar] [CrossRef]
- Zarroug, Y.; Djebali, K.; Sfayhi, D.; Khemakhem, M.; Boulares, M.; El Felah, M.; Mnasser, H.; Kharrat, M. Optimization of barley flour and inulin addition for pasta formulation using mixture design approach. J. Food Sci. 2022, 87, 68–79. [Google Scholar] [CrossRef]
- Gasparre, N.; Rosell, C.M. Role of hydrocolloids in gluten free noodles made with tiger nut flour as non-conventional powder. Food Hydrocoll. 2019, 97, 105194. [Google Scholar] [CrossRef]
- Difonzo, G.; de Gennaro, G.; Caponio, G.R.; Vacca, M.; dal Poggetto, G.; Allegretta, I.; Immirzi, B.; Pasqualone, A. Inulin from globe artichoke roots: A promising ingredient for the production of functional fresh pasta. Foods 2022, 11, 3032. [Google Scholar] [CrossRef] [PubMed]
- Padalino, L.; Costa, C.; Conte, A.; Melilli, M.G.; Sillitti, C.; Bognanni, R.; Raccuia, S.A.; Del Nobile, M.A. The quality of functional whole-meal durum wheat spaghetti as affected by inulin polymerization degree. Carbohydr. Polym. 2017, 173, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. How combinations of dietary fibres can affect physicochemical characteristics of pasta. Starch/Staerke 2015, 66, 41–46. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.J.; Fellows, C.M.; Blazek, J.; Gilbert, E.P. Effect of inulin soluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 132, 993–1002. [Google Scholar] [CrossRef]
- Brennan, C.S.; Kuri, V.; Tudoricǎ, C.M. Inulin-enriched pasta: Effects on textural properties and starch degradation. Food Chem. 2004, 86, 189–193. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of four types of dietary fiber on the technological quality of pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Manno, D.; Filippo, E.; Serra, A.; Negro, C.; De Bellis, L.; Miceli, A. The influence of inulin addition on the morphological and structural properties of durum wheat pasta. Int. J. Food Sci. Technol. 2009, 44, 2218–2224. [Google Scholar] [CrossRef]
- Tudoricǎ, C.M.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Peressini, D.; Cavarape, A.; Brennan, M.A.; Gao, J.; Brennan, C.S. Viscoelastic properties of durum wheat doughs enriched with soluble dietary fibres in relation to pasta-making performance and glycaemic response of spaghetti. Food Hydrocoll. 2020, 102, 105613. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudoricǎ, C.M. Fresh pasta quality as affected by enrichment of nonstarch polysaccharides. J. Food Sci. 2007, 72, S659–S665. [Google Scholar] [CrossRef]
- Filipović, J.; Pezo, L.; Filipović, V.; Brkljača, J.; Krulj, J. The effects of ω-3 fatty acids and inulin addition to spelt pasta quality. LWT 2015, 63, 43–51. [Google Scholar] [CrossRef]
- Filipović, J.S.; Pezo, L.L.; Filipović, V.S.; Ludajić, G.I. Spelt pasta with inulin as a functional food. Acta Period. Technol. 2015, 46, 37–44. [Google Scholar] [CrossRef]
- Singthong, J.; Thongkaew, C. Effect of Jerusalem artichoke (Helianthus tuberosus) powder on quality of glass noodles. Food Res. 2020, 4, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Garbetta, A.; D’Antuono, I.; Melilli, M.G.; Sillitti, C.; Linsalata, V.; Scandurra, S.; Cardinali, A. Inulin enriched durum wheat spaghetti: Effect of polymerization degree on technological and nutritional characteristics. J. Funct. Foods 2020, 71, 104004. [Google Scholar] [CrossRef]
- Tubili, C.; Di Folco, U.; Hassan, O.M.S.; Agrigento, S.; Carta, G.; Pandolfo, M.M.; Nardone, M.R. Fiber enriched protein-free pasta and bread: Is it a useful tool in chronic kidney disease in type 2 diabetes? Med. J. Nutr. Metab. 2016, 9, 95–99. [Google Scholar] [CrossRef]
- Hassan, O.M.S.; Di Folco, U.; Nardone, M.R.; Tubili, F.; Tubili, C. Fiber enrichment of pasta: Metabolic effects and diet adherence in obese subjects. Med. J. Nutr. Metab. 2020, 13, 53–62. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.; Liu, H.; Hu, J. In vitro gastrointestinal digestion of whole grain noodles supplemented with soluble dietary fiber and their effects on children fecal microbiota. Food Biosci. 2023, 53, 102600. [Google Scholar] [CrossRef]
Inulin Type, Properties, and Usage Ratio | Pasta Shape/Type | Major Findings In Technological Properties | References |
---|---|---|---|
Commercial (ND): 4% a | Turkish noodle | Moisture↑, volume increase↑, CT↓, WA↑, CL↓, Color(Raw): L*↑, a*↓, b*↑; Color(Cooked): L*↓, a*↑, b*↑, Texture(Raw): firmness↑, total shearing force↑; Texture(Cooked): hardness↔, adhesiveness↑, Sensory(Raw): color↓^, apperance↔^, fragility↑^; Sensory(Cooked): color↑^, hardness↓^, chewability↓^, taste↓^ | [7] |
Commercial (average DP ≥ 23): 5 a and 10% a | _ | CT↓^, SI↓^, CL↑^, Color(Raw): L*↑, a*↓, b*↑, Texture(Cooked): firmness↓^(5%), ↑^(10%) | [8] |
Commercial (average DP ≥ 23): 0.5% | Gluten-free noodle | Diameter↑, extrusion force↔, CT↑, WA↑, SI↑, CL↓, Color(Raw): L*↓, a*↔, b*↓; Color(Cooked): L*↑, a*↑, b*↑, Texture(Raw): firmness↑, work of shear↑, hardness↓, adhesiveness↓, chewiness↑, resilience↑; Texture(Cooked): firmness↑, work of shear↔, hardness↔, adhesiveness↑, chewiness↓, resilience↔ | [9] b |
Extracted from artichoke roots: 5 a, 10 a, and 15% a | Fresh tagliatelle | Moisture↓(except 15%), CT↑^, WA↔, SI↓, CL↑, Color(Raw): L*↓, a*↑, b*↓, Color(Cooked): L*↓, a*↑, b*↓, Texture(Raw): firmness↑, Texture(Cooked): firmness↑, Sensory: color↑, firmness, bulkiness↔, adhesiveness↔, odor, taste↓ | [10] |
Extracted from cardoon roots (H-DP), commercial (L-DP= average DP: 20–25): 2 and 4% | _ | CT↓^, SI: ↓(L-DP); ↑(H-DP), WA: ↓(L-DP); ↔(2% H-DP), ↑(4% H-DP), CL↑, Texture(Cooked): hardness↓, adhesiveness↑(except 2% H-DP), Sensory(Dried): color↔, break to resistance↔, overall quality↔; Sensory(Cooked): color↔, firmness↓, elasticity↔, bulkiness↓, adhesiveness↓, taste↔, overall quality↓ (except 4% H-DP) | [11] |
Commercial (average DP ≥ 10, average DP ≥ 23): 15% a | _ | Moisture↑, CT↑^, WA↑, SI↑, CL↑, Color(Raw): L*↓, a*↑(DP ≥ 10), a*↔(DP ≥ 23), b*↓(DP ≥ 10), b*↔ (DP ≥ 23); Color(Cooked): L*↑, a*↑, b*↓, Texture(Cooked): firmness↓(DP ≥ 10); ↔(DP ≥ 23), maximal breaking strength: ↓(DP ≥ 10); ↔(DP ≥ 23) | [12] |
Commercial (H-DP: average DP: 8–13), commercial (L-DP= average DP: 7-8): 2.5 a, 5 a, 7.5 a, 10 a, and 20% a | Spaghetti | CT↑^(2.5%, 5% H-DP); ↓^(7.5, 10, 20% H-DP; 5, 7.5, 10% L-DP ), WA↔ (7.5, 10, 20% H-DP); ↓(except 2.5% L-DP), SI↔(2.5, 20%H-DP; 2.5, 5% L-DP); ↓(7.5, 10% H-DP and L-DP), CL↑, Texture(Cooked): firmness↔ (2.5% L-DP; except 20% H-DP); ↓(5, 7.5, 10% L-DP), Sensory: firmness↓(except 2.5 L-DP),chewy↓ (except 2.5% L-DP), rubbery↓ (except 2.5% L-DP), roughness↑ (2.5, 5, 7.5, 10% L-DP) | [13] |
Commercial (average DP: ≈8–13): 2.5, 5, 7.5, and 10% | _ | Dry matter↑, WA↓^, SI↓, CL↔, Texture(Cooked): firmness↓^, adhesiveness↔, elasticity↓(except 5%) | [14] |
Commercial (average DP ≥ 23): 2.5, 5, 7.5, and 10% | _ | WA↓, SI↓, CL↑, Color(Cooked): L*↑, a*↔(except 2.5%), b*↓, Texture(Cooked): hardness↓, chewiness↓, springiness: ↔(2.5%, 5%); ↓ (7.5%, 10%), cohesiveness↔ | [15] |
Commercial (average DP > 20): 5 a, 10 a, and 15% a | Macaroni | Moisture(Dried)↑^(except 5%) | [16] |
Commercial (average DP: 8–13): 7.5 a, 10 a, 12.5 a, and 15% a | Spaghetti | Dry matter(raw)↑, dry matter(cooked): ↓(7.5 and 10%); ↔(12.5%); ↑(15%), SI: ↑(7.5 and 10%); ↔(12.5%), ↓(15%), CL↑, Texture(Cooked): firmness (peak force)↔, adhesiveness↑(except 7.5%), stickiness: ↓(7.5 and 10%); ↑(12.5 and 15%), elasticity↓, DSC: Tonset↑^(except 15%), Tendset↑^, enthalpy↓, gelatinization temperature↔ (except 15%) | [17] |
Commercial (average DP≥10, DP≥23): 15% a | Spaghetti | Moisture↓, CL↑, Color(Raw): L*: ↓(DP ≥ 10),; ↔(DP ≥ 23), a*↓, b*↓, Texture(Cooked): firmness↓, stickness↑ | [18] |
Commercial (average DP: 8–13): 2.5 a, 5 a, 7.5 a, and 10% a | Spaghetti | SI↓^, CL↑^, Texture(Cooked): firmness↓^, stickiness↑^, adhesiveness↑^, elasticity↓^ | [19] |
Commercial (average DP ≥ 23): 10 a and 20% a | Spaghetti | Color: L*↑, a*↓, b*↑, Texture: hardness: ↔(10%); ↓(20%), adhesiveness↓, work of shear↓ | [20] |
Commercial (average DP ≥ 23): 5 a, 10 a, and 20% a | _ | Color(Cooked): L↔, a*↔, b*↔, Texture(Cooked): hardness↓, adhesiveness↑, work of shear↓ | [21] |
Extracted from Jerusalem artichoke tubers: 1, 2, and 3% | _ | Color: L*↓^, a*↑^, b*↑^, Texture: hardness↑^, cohesiveness↓^, springiness↔^ | [22] |
Inulin Type, Properties, and Usage Ratio | Pasta Shape/Type | Major Findings in Nutritional Properties | References |
---|---|---|---|
Commercial (ND): 4% a | Turkish noodle | Ash↑, dietary fiber↑ | [7] |
Extracted from artichoke roots: 5 a, 10 a, and 15% a | Fresh tagliatelle | Protein↓, lipid↓, carbohydrate↓ (except 5%), total dietary fiber↑, ash↑(except 5%), predicted glycemic index↓ | [10] |
Extracted from cardoon roots (H-DP), Ccommercial (L-DP = average DP: 20–25): 2 and 4% | _ | Protein↓(except 2% H-DP), lipid↑ (except 4% L-DP), available carbohydrate↓, total dietary fiber↑, soluble dietary fiber↑, insoluble dietary fiber↑, starch digestibility↓ | [11] |
Commercial (average DP: ≈8–13): 2.5, 5, 7.5, and 10% | _ | Glycemic index↔ | [14] |
Commercial (average DP > 20): 5 a, 10 a, and 15% a | Macaroni | Protein↓^, starch↓^, ash↓^(except 10%) | [16] |
Commercial (average DP: 8–1): 2.5 a, 5 a, 7.5 a, and 10% a | Spaghetti | Protein↓^, carbohydrate↓^, starch↓^, total non-starch polysaccharide↑^ | [19] |
Commercial (average DP ≥ 23): 10 a and 20% a | Spaghetti | Protein↓, lipid↓, sugar↓, starch↓, cellulose↑, ω-3 fatty acids content↔, total dietary fiber↑ | [20] |
Commercial (average DP ≥ 23): 5 a, 10 a, and 20% | _ | Protein↓(except 5%), lipid↓, sugar↑, starch↓, cellulose↑, dietary fiber↑, non-digestible carbohydrates↑, energy↓^ | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazici, G.N.; Yilmaz, I.; Taspinar, T.; Ozer, M.S. Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review. Biol. Life Sci. Forum 2023, 26, 88. https://doi.org/10.3390/Foods2023-14967
Yazici GN, Yilmaz I, Taspinar T, Ozer MS. Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review. Biology and Life Sciences Forum. 2023; 26(1):88. https://doi.org/10.3390/Foods2023-14967
Chicago/Turabian StyleYazici, Gamze Nil, Isilay Yilmaz, Tansu Taspinar, and Mehmet Sertac Ozer. 2023. "Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review" Biology and Life Sciences Forum 26, no. 1: 88. https://doi.org/10.3390/Foods2023-14967
APA StyleYazici, G. N., Yilmaz, I., Taspinar, T., & Ozer, M. S. (2023). Application of Inulin in Pasta: The Influence on Technological and Nutritional Properties and on Human Health—A Review. Biology and Life Sciences Forum, 26(1), 88. https://doi.org/10.3390/Foods2023-14967