Development of Polyphenolics Extracts from Mexican Crops as Natural Antimicrobial Agents for Postharvest Treatments †
Abstract
:1. Introduction
2. Mexican Crops as Potential Sources of PPhs Extracts Natural Antimicrobial
2.1. Alslpice (Piper Dioica L. Merril)
2.2. Broccoli (Brassica Oleracea var. Italica)
2.3. Cinnamon (Cinnamomum Zeylanicum J.Presl)
2.4. Habanero Chili Pepper (Capsicum Chinense Jacq.)
2.5. Jackfruit (Artocarpus Heterophyllus Lam.)
2.6. Prickly Pear (Opuntia ficus indica (L.) Mill.)
3. Antimicrobial Properties vs. Antioxidant Effect of PPhs
4. Challenges in Research and Use of NAs in Postharvest Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. El Sistema Alimentario En México-Oportunidades Para El Campo Mexicano En La Agenda 2030 de Desarrollo Sostenible; FAO: Rome, Italy, 2019. [Google Scholar]
- Aguilar-Veloz, L.M.; Calderón-Santoyo, M.; Carvajal-Millan, E.; Martínez-Robinson, K.; Ragazzo-Sánchez, J.A. Artocarpus Heterophyllus Lam. Leaf Extracts Added to Pectin-Based Edible Coating for Alternaria Sp. Control in Tomato. LWT 2022, 156, 113022. [Google Scholar] [CrossRef]
- Aguilar-Veloz, L.M.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A. Optimization of Microwave Assisted Extraction of Artocarpus Heterophyllus Leaf Polyphenols with Inhibitory Action against Alternaria Sp. and Antioxidant Capacity. Food Sci. Biotechnol. 2021, 30, 1695–1707. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Veloz, L.M.; Calderón-Santoyo, M.; Vázquez González, Y.; Ragazzo-Sánchez, J.A. Application of Essential Oils and Polyphenols as Natural Antimicrobial Agents in Postharvest Treatments: Advances and Challenges. Food Sci. Nutr. 2020, 8, 2555–2568. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, K.; Siddique, F.; Ameer, K.; Arshad, M.; Kharal, S.; Mohamed Ahmed, I.A.; Yasmin, Z.; Aziz, N. Phytochemical Profiling, Antimicrobial, and Antioxidant Activities of Hydroethanolic Extracts of Prickly Pear (Opuntia Ficus Indica) Fruit and Pulp. Food Sci. Nutr. 2023, 11, 1916–1930. [Google Scholar] [CrossRef] [PubMed]
- Erazo Guijarro, M.J.; Arroyo Bonilla, F.A.; Arroyo Bonilla, D.A.; Castro García, M.R.; Santacruz Terán, S.G.; Armas Vega, A.D.C. Efecto Antimicrobiano Del Cinamaldehído, Timol, Eugenol y Quitosano Sobre Cepas de Streptococcus Mutans. Rev. Cubana. Estomatol. 2017, 54, 1–9. [Google Scholar]
- Anaya-Castro, M.A.; Ayala-Zavala, J.F.; Muñoz-Castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β-Cyclodextrin Inclusion Complexes Containing Clove (Eugenia Caryophyllata) and Mexican Oregano (Lippia Berlandieri) Essential Oils: Preparation, Physicochemical and Antimicrobial Characterization. Food Packag Shelf Life 2017, 14, 96–101. [Google Scholar] [CrossRef]
- Menezes, R.D.P.; Bessa, M.A.D.S.; Siqueira, C.D.P.; Teixeira, S.C.; Ferro, E.A.V.; Martins, M.M.; Cunha, L.C.S.; Martins, C.H.G. Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum Chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 2022, 11, 1154. [Google Scholar] [CrossRef]
- Piña Barrera, A.M.; Ramírez Pérez, M.S.; Báez González, J.G.; Amaya-Guerra, C.A.; Álvarez Román, R.; Galindo Rodríguez, S.A. Recubrimiento Comestible a Base de Alginato En Combinación Con Eugenol Nanoencapsulado y Su Efecto Conservador En La Vida Útil de Jitomate (Solanum Lycopersicum). Biotecnia 2021, 23, 133–141. [Google Scholar] [CrossRef]
- Ochoa Fuentes, Y.M.; Cerna Chávez, E.; Landeros Flores, J.; Hernández Camacho, S.; Delgado Ortiz, J.C. Evaluación in Vitro de La Actividad Antifúngica de Cuatro Extractos Vegetales Metanólicos Para El Control de Tres Especies de Fusarium spp. Phyton (Buenos Aires) 2012, 81, 69–73. [Google Scholar]
- Solís-Silva, A.; Reyes-Munguía, A.; Madariaga-Navarrete, G.; Medina-Pérez, R.G.; Campos-Montiel, A.J.; Cenobio-Galindo, J. Evaluación de La Actividad Antifúngica y Antioxidante de Una Nanoemulsión W/O de Opuntia Oligacantha y Aceite Esencial de Citrus X Sinensis. Investig. Y Desarro. En Cienc. Y Tecnol. De Aliment. 2018, 3, 182–187. [Google Scholar]
- García, E.W.H. Posibilidad de Desarrollo y Cultivo de La Pimienta Gorda (Pimienta Dioica) En El Estado de Tabasco. Ph.D. Thesis, Universidad Autonoma Chapingo, Texcoco, México, 1971. [Google Scholar]
- Martínez, M.Á.; Evangelista, V.; Mendoza, M.; Basurto, F.; Mapes, C. Allspice [Pimenta Dioica (L.) Merrill], A Non-Timber Forest Product of Sierra Norte de Puebla, Mexico; Case Studies of Non-Timber Forest Product Systems; Center for International Forestry Research: Bogor, Indonesia, 2004; Volume 3. [Google Scholar]
- Servicio de Información Agroalimentaria y Pesquera El Brocoli Casi Un Super Alimento. Available online: https://www.gob.mx/siap/articulos/el-brocoli-casi-un-super-alimento (accessed on 20 August 2023).
- Pacheco-Cano, R.D.; Salcedo-Hernández, R.; López-Meza, J.E.; Bideshi, D.K.; Barboza-Corona, J.E. Antimicrobial Activity of Broccoli (Brassica Oleracea Var. Italica) Cultivar Avenger against Pathogenic Bacteria, Phytopathogenic Filamentous Fungi and Yeast. J. Appl. Microbiol. 2018, 124, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, C.B.; Martin, J.G.P.; de Alencar, S.M.; Porto, E. Antilisterial Activity of Broccoli Stems (Brassica Oleracea) by Flow Cytometry. Int. Food Res. J. 2014, 21, 395. [Google Scholar]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum Zeylanicum Bark Essential Oil. Evid. Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Ezcurra, C. Variabilidad de Los Parámetros de Calidad de Muestras Comerciales de Canela Molida. Master’s Thesis, Universidad Miguel Hernández de Elche, Alicante, España, 2021. [Google Scholar]
- Cisneros-Pineda, O.; Torres-Tapia, L.W.; Gutiérrez-Pacheco, L.C.; Contreras-Martín, F.; González-Estrada, T.; Peraza-Sánchez, S.R. Capsaicinoids Quantification in Chili Peppers Cultivated in the State of Yucatan, Mexico. Food Chem 2007, 104, 1755–1760. [Google Scholar] [CrossRef]
- Avilés-Betanzos, K.A.; Oney-Montalvo, J.E.; Cauich-Rodríguez, J.V.; González-Ávila, M.; Scampicchio, M.; Morozova, K.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum Chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants 2022, 11, 2060. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, M.; Ginestra, G.; Youcefi, F.; Filocamo, A.; Bisignano, C.; Riazi, A. Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum Annuum L.) and Their Possible Mode of Interaction. Curr. Microbiol. 2017, 74, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Vuerich, M.; Petrussa, E.; Filippi, A.; Cluzet, S.; Fonayet, J.V.; Sepulcri, A.; Piani, B.; Ermacora, P.; Braidot, E. Antifungal Activity of Chili Pepper Extract with Potential for the Control of Some Major Pathogens in Grapevine. Pest. Manag. Sci. 2023, 79, 2503–2516. [Google Scholar] [CrossRef]
- Sreeja Devi, P.S.; Kumar, N.S.; Sabu, K.K. Phytochemical Profiling and Antioxidant Activities of Different Parts of Artocarpus Heterophyllus Lam.(Moraceae): A Review on Current Status of Knowledge. Futur. J. Pharm. Sci. 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Guerrero, P.C.; Majure, L.C.; Cornejo-Romero, A.; Hernández-Hernández, T. Phylogenetic Relationships and Evolutionary Trends in the Cactus Family. J. Hered. 2019, 110, 4–21. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef]
- Vázquez-González, Y.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M. Characterization and Antifungal Activity of Jackfruit (Artocarpus Heterophyllus Lam.) Leaf Extract Obtained Using Conventional and Emerging Technologies. Food Chem. 2020, 330, 127211. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Bautista-Baños, S.; Sivakumar, D. Decay Control in the Postharvest System: Role of Microbial and Plant Volatile Organic Compounds. Postharvest. Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent Advances in Natural Polyphenol Research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef] [PubMed]
- Albonico, M.; Schutz, L.F.; Caloni, F.; Cortinovis, C.; Spicer, L.J. In Vitro Effects of the Fusarium Mycotoxins Fumonisin B1 and Beauvericin on Bovine Granulosa Cell Proliferation and Steroid Production. Toxicon 2017, 128, 38–45. [Google Scholar] [CrossRef]
- Basak, S.; Guha, P. A Review on Antifungal Activity and Mode of Action of Essential Oils and Their Delivery as Nano-Sized Oil Droplets in Food System. J. Food Sci. Technol. 2018, 55, 4701–4710. [Google Scholar] [CrossRef]
- Kothalawala, S.G.; Sivakumaran, K. An Overview of Nanotechnology Applications in Food Industry. Int. J. Sci. Res. Publ. 2018, 8, 340. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Bhandari, B. Nanotechnology—A Shelf Life Extension Strategy for Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 1706–1721. [Google Scholar] [CrossRef]
Source | Extract/PPhs Concentration | Pathogen | Concentration | Inhibition | Reference |
---|---|---|---|---|---|
Foodborne microorganisms | |||||
Prickly pear (Opuntia ficus indica (L.) Mill.) (Cladode) | Aqueous PPhs extract 700 mg GAE/100 g | Salmonella typhi Helicobacter pylori Escherichia coli Staphylococcus aureus | 3.40 mg/mL 1.37 mg/mL 1.41 mg/mL, 1.41 mg/mL | >50% | [5] |
Piper dioica L.merril | Aqueous eugenol extract * | Streptococcus mutans | 0.1–1 mg/mL | 15.9 mm a 24 h 18.6 mm a 48 h | [6] |
Clove (Eugenia caryophyllata Thunb.) Mexican oregano (Lippia berlandieri Schauer) | Alcoholic extracts of eugenol and carvacrol* | Listeria monocytogenes ATCC 19,114 E. coli ATCC 25922 | >than non-encapsulated extracts | [7] | |
Habanero chili pepper (Capsicum chinense) | Habanero Pepper Peel Ethanolic Extract | Candida albicans—ATCC 90,028 C. tropicalis—CI C. glabrata—ATCC2001 C. krusei—ATCC 6258 | 3000 µg/mL 750 µg/mL 3000 µg/mL 3000 µg/mL | 100% | [8] |
Phytopathogens | |||||
Jackfruit leaf (Artocarpus heterophyllus Lam) | Hydroalcoholic PPhs extract | Alternaria alternate | 1 mg/mL ** | 40% | [3] |
Jack ruit leaf (Artocarpus heterophyllus Lam) | Hydroalcoholic PPhs extract | Colletotrichum gloesporioides | 1–5 mg/mL ** | 40–60% | [4] |
Pepper (Piper Dioica L. merril) | Nanoencapsulated eugenol * | C. gloesporioides | 0.5% (p/p) eugenol nanoformulation | 100% | [9] |
Cinnamon (Cinnamomum zeylanicum J.Presl) | Methanolic extract | Fusarium spp. | 300 ppm | 31.8–45.6% | [10] |
Xoconostle (Opuntia oligacantha C.F. Först) | Nanoencapsulated emulsion 409.37 mg GAE/Ml | C. gloesporioides | >that non encapsulated extracts | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Veloz, L.M.; Olguín-Rojas, J.A.; Gómez-Flores, D.; Vázquez-González, C.; Castro-Díaz, A.S.; González-Pérez, M.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A. Development of Polyphenolics Extracts from Mexican Crops as Natural Antimicrobial Agents for Postharvest Treatments. Biol. Life Sci. Forum 2023, 26, 110. https://doi.org/10.3390/Foods2023-15486
Aguilar-Veloz LM, Olguín-Rojas JA, Gómez-Flores D, Vázquez-González C, Castro-Díaz AS, González-Pérez M, Calderón-Santoyo M, Ragazzo-Sánchez JA. Development of Polyphenolics Extracts from Mexican Crops as Natural Antimicrobial Agents for Postharvest Treatments. Biology and Life Sciences Forum. 2023; 26(1):110. https://doi.org/10.3390/Foods2023-15486
Chicago/Turabian StyleAguilar-Veloz, Laura M., Jose Arturo Olguín-Rojas, Diana Gómez-Flores, Cecilia Vázquez-González, Alfredo Salvador Castro-Díaz, Manuel González-Pérez, Montserrat Calderón-Santoyo, and Juan Arturo Ragazzo-Sánchez. 2023. "Development of Polyphenolics Extracts from Mexican Crops as Natural Antimicrobial Agents for Postharvest Treatments" Biology and Life Sciences Forum 26, no. 1: 110. https://doi.org/10.3390/Foods2023-15486
APA StyleAguilar-Veloz, L. M., Olguín-Rojas, J. A., Gómez-Flores, D., Vázquez-González, C., Castro-Díaz, A. S., González-Pérez, M., Calderón-Santoyo, M., & Ragazzo-Sánchez, J. A. (2023). Development of Polyphenolics Extracts from Mexican Crops as Natural Antimicrobial Agents for Postharvest Treatments. Biology and Life Sciences Forum, 26(1), 110. https://doi.org/10.3390/Foods2023-15486