In Silico Determination of Changes in Transcription Factor Binding Sites for the Preeclampsia Risk Haplotype in the Regulatory Region of the FLT1 Gene †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of SNPs Associated with Preeclampsia
2.2. Determination of Regulatory Areas Overlapping with SNPs Associated with Preeclampsia
2.3. Study of the Enhancer Signature of Regulatory Areas in the Placenta
2.4. Selection of SNPs
2.5. Preeclampsia Risk Haplotype Determination
2.6. Obtaining the Reference DNA Sequence for the Region of Interest
2.7. Determination of Change in Transcription Factor Binding Sites (TFBSs)
2.8. Determination of Transcription Factor Expression (TF)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preeclampsia. Eclampsia. Edema, Proteinuria and Hypertensive Disorders during Pregnancy, Childbirth and the Postpartum Period; Clinical Guidelines: Moscow, Russia, 2021. (In Russian) [Google Scholar]
- Osungbade, K.O.; Ige, O.K. Public health perspectives of preeclampsia in developing countries: Implication for health system strengthening. J. Pregnancy 2011, 2011, 481095. [Google Scholar] [CrossRef]
- Wang, W.; Xie, X.; Yuan, T.; Wang, Y.; Zhao, F.; Zhou, Z.; Zhang, H. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: A population-based study. BMC Pregnancy Childbirth 2021, 21, 364. [Google Scholar] [CrossRef]
- Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obs. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 202 Summary: Gestational Hypertension and Preeclampsia. Obs. Gynecol. 2019, 133, 1. [CrossRef]
- Chesley, L.C.; Cosgrove, R.A.; Annitto, J.E. Pregnancies in the sisters and daughters of eclamptic women. Obstet Gynecol. 1962, 20, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lie, R.T.; Rasmussen, S.; Brunborg, H.; Gjessing, H.K.; Lie-Nielsen, E.; Irgens, L.M. Fetal and maternal contributions to risk of pre-eclampsia: Population-based study. BMJ 1998, 316, 1343–1347. [Google Scholar] [CrossRef]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like Tyrosine Kinase 1 and Endothelial Dysfunction in the Pathogenesis of Preeclampsia. Pediatr. Res. 2005, 57, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, A.; Purwosunu, Y.; Farina, A.; Shimizu, H.; Nakamura, M.; Wibowo, N.; Rizzo, N.; Okai, T. Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15-20 weeks of gestation. BJOG 2010, 117, 557–564. [Google Scholar] [CrossRef]
- Galaziou, A.; Filidou, E.; Spathakis, M.; Arvanitidis, K.; Arzou, B.C.; Galazios, G.; Koutlaki, N.; Nikolettos, N.; Kolios, G. Imbalance of growth factors mRNA expression associated with oxidative stress in the early pregnancy loss. J. Matern. Fetal Neonatal Med. 2021, 35, 1–7. [Google Scholar] [CrossRef]
- Lim, S.; Li, W.; Kemper, J.; Nguyen, A.; Mol, B.W.; Reddy, M. Biomarkers and the Prediction of Adverse Outcomes in Preeclampsia: A Systematic Review and Meta-analysis. Obs. Gynecol. 2021, 137, 72–81. [Google Scholar] [CrossRef]
- Phupong, V.; Areeruk, W.; Tantbirojn, P.; Lertkhachonsuk, R. Soluble fms-like tyrosine kinase 1 and placental growth factor ratio for predicting preeclampsia in elderly gravida. Hypertens Pregnancy 2020, 39, 139–144. [Google Scholar] [CrossRef]
- Ratnik, K.; Rull, K.; Aasmets, O.; Kikas, T.; Hanson, E.; Kisand, K.; Fischer, K.; Laan, M. Novel Early Pregnancy Multimarker Screening Test for Preeclampsia Risk Prediction. Front. Cardiovasc. Med. 2022, 9, 932480. [Google Scholar] [CrossRef]
- Kikas, T.; Inno, R.; Ratnik, K.; Rull, K.; Laan, M. C-allele of rs4769613 Near FLT1 Represents a High-Confidence Placental Risk Factor for Preeclampsia. Hypertension 2020, 76, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Steinthorsdottir, V.; McGinnis, R.; Williams, N.O.; Stefansdottir, L.; Thorleifsson, G.; Shooter, S.; Fadista, J.; Sigurdsson, J.K.; Auro, K.M.; Berezina, G.; et al. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat. Commun. 2020, 11, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef]
- Moore, J.E.; Purcaro, M.J.; Pratt, H.E.; Epstein, C.B.; Shoresh, N.; Adrian, J.; Kawli, T.; Davis, C.A.; Dobin, A.; Kaul, R.; et al. Expanded Encyclopaedias of DNA Elements in the Human and Mouse Genomes. Nature 2020, 583, 699–710. [Google Scholar]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- Rigden, D.J.; Fernández, X.M. The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 2022, 50, D1–D10. [Google Scholar] [CrossRef]
- Hu, H.; Miao, Y.R.; Jia, L.H.; Yu, Q.Y.; Zhang, Q.; Guo, A.Y. AnimalTFDB 3.0: A comprehensive resource for annotation and prediction of animal transcription factors. Nucl. Acids Res. 2019, 47, D33–D38. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef]
- McGinnis, R.; Steinthorsdottir, V.; Williams, N.O.; Thorleifsson, G.; Shooter, S.; Hjartardottir, S.; Bumpstead, S.; Stefansdottir, L.; Hildyard, L.; Sigurdsson, J.K.; et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat. Genet. 2017, 49, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Malaspina, D.; Kranz, T.; Kleinhaus, K.; Daboul, S.; Rothman, K.; Gilman, C.; Getz, M.; Harlap, S.; Friedlander, Y. Short duration of marriage at conception as an independent risk factor for schizophrenia. Schizophr. Res. 2019, 208, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Lisonkova, S.; Joseph, K.S. Incidence of preeclampsia: Risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol. 2013, 209, 544.e1–544.e12. [Google Scholar] [CrossRef]
Gene | Variant (SNP) | Chr Location (GRCh38.p13) | MAF * | Consequence | Allele Substitution |
---|---|---|---|---|---|
FLT1 | rs7320190 | chr13:28564119 | 0.20121 | None | T > C |
rs7318880 | chr13:28564148 | 0.50888 | None | C > T | |
rs12867370 | chr13:28564261 | 0.06396 | None | G > A | |
rs4769612 | chr13:28564361 | 0.45778 | None | C > T | |
rs4769613 | chr13:28564472 | 0.475826 | None | C > A, C > T | |
rs74623647 | chr13:28564495 | 0.00021 | None | G > A, G > T | |
rs7321138 | chr13:28564568 | 0.187966 | None | T > C, T > G | |
rs76592233 | chr13:28564624 | 0.00021 ** | None | C > A, C > G, C > T | |
rs9579193 | chr13:28564631 | 0.19905 | None | G > A, G > T |
TFBS | TFBS Changes for Each Haplotype (Hap.) with Frequency | Type of TF | RNA Expression in Placenta (The Human Protein Atlas; nTPM) | Protein Expression in Placenta (The Human Protein Atlas; Types of Cells) | |||
---|---|---|---|---|---|---|---|
Hap. 1 (0.4553) * | Hap. 2 (0.331) | Hap. 3 (0.1233) | Hap. 4 (0.0825) | ||||
KAT5 | 0 | 0 | 0 | 1 | Activator, acyltransferase, chromatin regulator, transferase | 29.9 | Decidual cells: medium Trophoblastic cells: high |
ELF1 | 2 | 2 | 2 | 3 | Activator, DNA-binding | 48.6 | Trophoblastic cells: medium |
POLR2A | 12 | 12 | 12 | 11 | 0.2 | NA | |
KLF15 | 3 | 3 | 3 | 2 | Activator, DNA-binding | 1.7 | Not detected |
SPIB | 2 | 2 | 2 | 3 | Activator, DNA-binding | 0.2 | Decidual cells: medium Trophoblastic cells: medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpova, N.; Dmitrenko, O.; Arshinova, E. In Silico Determination of Changes in Transcription Factor Binding Sites for the Preeclampsia Risk Haplotype in the Regulatory Region of the FLT1 Gene. Biol. Life Sci. Forum 2022, 20, 31. https://doi.org/10.3390/IECBM2022-13721
Karpova N, Dmitrenko O, Arshinova E. In Silico Determination of Changes in Transcription Factor Binding Sites for the Preeclampsia Risk Haplotype in the Regulatory Region of the FLT1 Gene. Biology and Life Sciences Forum. 2022; 20(1):31. https://doi.org/10.3390/IECBM2022-13721
Chicago/Turabian StyleKarpova, Nataliia, Olga Dmitrenko, and Ekaterina Arshinova. 2022. "In Silico Determination of Changes in Transcription Factor Binding Sites for the Preeclampsia Risk Haplotype in the Regulatory Region of the FLT1 Gene" Biology and Life Sciences Forum 20, no. 1: 31. https://doi.org/10.3390/IECBM2022-13721
APA StyleKarpova, N., Dmitrenko, O., & Arshinova, E. (2022). In Silico Determination of Changes in Transcription Factor Binding Sites for the Preeclampsia Risk Haplotype in the Regulatory Region of the FLT1 Gene. Biology and Life Sciences Forum, 20(1), 31. https://doi.org/10.3390/IECBM2022-13721