Changes in Soil Seed Bank and Vegetation at Abandoned Bait Sites in a Central European Hilly Area †
Abstract
:1. Introduction
2. Experiments
2.1. Study Site
2.2. Sampling Setup
2.3. Data Processing
3. Results
3.1. Vegetation Composition
3.2. Soil Seed Bank Composition
3.3. Seed Bank Persistence
4. Discussion
4.1. Vegetation Composition
4.2. Soil Seed Bank Composition
4.3. Seed Bank Persistence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, J.M.; Gerhardt, P.; Steyaert, S.M.J.G.; Hochbichler, E.; Hacklander, K. Diversionary feeding can reduce red deer habitat selection pressure on vulnerable forest stands, but is not a panacea for red deer damage. For. Ecol. Manag. 2018, 407, 166–173. [Google Scholar] [CrossRef]
- Selva, N.; Berezowska-Cnota, T.; Elguero-Claramunt, I. Unforeseen Effects of Supplementary Feeding: Ungulate Baiting Sites as Hotspots for Ground-Nest Predation. PLoS ONE 2014, 9, e90740. [Google Scholar] [CrossRef] [PubMed]
- Milner, J.M.; Van Beest, F.M.; Schmidt, K.T.; Brook, R.K.; Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 2014, 78, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Mathisen, K.M.; Rèmy, A.; Skarpe, C. Shoot growth responses at supplementary feeding stations for moose in Norway. Alces 2015, 51, 123–133. [Google Scholar]
- Rinella, M.J.; Dean, R.; Vavra, M.; Parks, C.G. Vegetation responses to supplemental winter feeding of elk in western Wyoming. West. N. Am. Nat. 2012, 72, 78–83. [Google Scholar] [CrossRef]
- Heltai, M.; Sonkoly, K. The role and opportunities of feeding in game management (Review). AWETH 2009, 5, 1–22. [Google Scholar]
- Rusvai, K.; Kispál, L.; Czóbel, S. Assessment of weed invasion at bait sites in the Mátra Landscape Protection Area. Columella J. Agric. Environ. Sci. 2019, 6, 37–44. [Google Scholar] [CrossRef]
- Csecserits, A.; Czúcz, B.; Halassy, M.; Kröel-Dulay, G.; Rédei, T.; Szabó, R.; Szitár, K.; Török, K. Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosyst. 2011, 145, 715–729. [Google Scholar] [CrossRef]
- Boecker, D.; Centeri, C.; Welp, G.; Möseler, B.M. Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobot. 2015, 50, 91–106. [Google Scholar] [CrossRef]
- Thompson, K.; Grime, P.J. Seasonal variation in seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 1979, 67, 893–921. [Google Scholar] [CrossRef] [Green Version]
- Chesson, P.L. The storage effect in stochastic population models. Lect. Notes Biomath. 1984, 54, 76–89. [Google Scholar]
- Gioria, M.; Pyšek, P.; Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 2012, 84, 327–350. [Google Scholar]
- Lewis, J. Longevity of crop and weed seeds: Survival after 20 years in soil. Weed Res. 1973, 13, 179–191. [Google Scholar] [CrossRef]
- Telewski, F.W.; Zeevaart, J.A.D. 120-yr period from Dr. Beal’s seed viability experiment. Am. J. Bot. 2002, 89, 1285–1288. [Google Scholar] [CrossRef] [Green Version]
- Bölöni, J.; Molnár, Z.; Biró, M.; Horváth, F. Distribution of the (semi-) natural habitats in Hungary II. Woodlands and shrublands. Acta Bot. Hung. 2008, 50, 107–148. [Google Scholar] [CrossRef]
- Katona, K.; Kiss, M.; Bleier, N.; Székely, J.; Nyeste, M.; Kovács, V.; Terhes, A.; Fodor, Á.; Olajos, T.; Rasztovics, E.; et al. Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary. Biodivers. Conserv. 2013, 22, 1167–1180. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies; Likens, G.E., Ed.; Ecology: Approaches and Alternatives; Springer: New York, NY, USA; Berlin, Germany, 1989; pp. 110–135. [Google Scholar]
- Available online: https://www.novenyzetiterkep.hu/english/node/1090 (accessed on 21 November 2021).
- Koncz, G.; Papp, M.; Török, P.; Kotroczó, Z.; Krakomperger, Z.; Matus, G.; Tóthmérész, B. The role of seed bank in the dynamics of understorey in an oak forest in Hungary. Acta Biol. Hung. 2010, 61, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquemyn, H.; Van Mechelen, C.; Brys, R.; Honnay, O. Management effects on the vegetation and soil seed bank of calcareous grasslands: An 11-year experiment. Biol. Conserv. 2011, 144, 416–422. [Google Scholar] [CrossRef]
- Ellenberg, H. Zeigerwerte der Gefäßpflanzen Mitteleuropas. (Indicator values of vascular plants in Central Europe). Scr. Geobot. 1974, 9, 1–97. [Google Scholar]
- Grime, J.P. Plant. Strategies and Vegetation Processes; Wiley: Chichester, UK; New York, NY, USA, 1979; p. 222. [Google Scholar]
- Borhidi, A. Social behavior types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 1995, 39, 97–181. [Google Scholar]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Csecserits, A.; Szabó, R.; Halassy, M.; Rédei, T. Testing the validity of successional predictions on an old-field chronosequence in Hungary. Community Ecol. 2007, 8, 195–207. [Google Scholar] [CrossRef]
- Kotanen, P.M. Effects of gap area and shape on recoloniza-tion by grassland plants with differing reproductive strategies. Can. J. Bot. 1997, 75, 352–361. [Google Scholar] [CrossRef]
- Bidwell, S.; Attiwill, P.M.; Adams, M.A. Nitrogen availability and weed invasion in a remnant native woodland in urban Melbourne. Austral. Ecol. 2006, 31, 262–270. [Google Scholar] [CrossRef]
- Robertson, S.G.; Hickman, K.R. Aboveground plant community and seed bank composition along an invasion gradient. Plant. Ecol. 2012, 213, 1461–1475. [Google Scholar] [CrossRef]
- Gooden, B.; French, K. Impacts of alien grass invasion in coastal seed banks vary amongst native growth forms and dispersal strategies. Biol. Conserv. 2014, 171, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Hopfensperger, K.N. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 2007, 116, 1438–1448. [Google Scholar] [CrossRef]
- Bossuyt, B.; Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 2008, 19, 875–884. [Google Scholar] [CrossRef]
- Matus, G.; Papp, M.; Tothmeresz, B. Impact of management on vegetationdynamics and seed bank formation of inland dune grassland in Hungary. Flora 2005, 200, 296–306. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, X.; Du, G. Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora 2010, 205, 128–134. [Google Scholar] [CrossRef]
- Donath, T.W.; Eckstein, R.L. Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant. Ecol. 2010, 207, 257–268. [Google Scholar] [CrossRef]
- Holmgren, M.; Scheffer, M.; Huston, M.A. The interplay of facilitation and competition in plant communities. Ecology 1997, 78, 1966–1975. [Google Scholar] [CrossRef]
- Ruprecht, E.; Józsa, J.; Ölvedi, T.B.; Simon, J. Differential effects of several “litter” types on the germination of dry grassland species. J. Veg. Sci. 2010, 21, 1069–1081. [Google Scholar] [CrossRef]
- Arruda, A.J.; Costa, F.V.; Guerra, T.J.; Junqueira, P.A.; Dayrell, R.L.; Messeder, J.V.; Rodrigues, A.T.S.; Buisson, E.; Silveira, F.A.O. Topsoil disturbance reshapes diaspore interactions with ground-foraging animals in a megadiverse grassland. J. Veg. Sci. 2020, 31, 1039–1052. [Google Scholar] [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Thompson, K. The functional ecology of seed banks. In Seed Ecology; Fenner, M., Ed.; Chapman & Hall: London, UK, 1985; pp. 231–258. [Google Scholar]
- Kiss, R.; Valkó, O.; Tóthmérész, B.; Török, P. Seed bank research in Central-European grassland. An overview In Seed Banks: Types, Roles and Research; Murphy, J., Ed.; Nova Science Publishers: New York, NY, USA, 2016; pp. 1–34. [Google Scholar]
- Jongepierová, I.; Jongepier, J.W.; Klimeš, L. Restoring grassland on arable land: An example of a fast spontaneous succession without weed-dominated stages. Preslia 2004, 76, 361–369. [Google Scholar]
- Ruprecht, E. Successfully recovered grassland: A promising example from Romanian old-fields. Restor. Ecol. 2006, 14, 473–480. [Google Scholar] [CrossRef]
- Molnár, Z. Sár-hegy (D-Mátra–Mátraalja). In The XI. MÉTA-TÚRA Tour Guid Booklet—Manuscript; Bartha, S., Ed.; MTA ÖBKI: Vácrátót, Hungary, 2008; pp. 34–42, (In Hungarian). Available online: https://www.novenyzetiterkep.hu/sites/novenyzetiterkep.hu/files/MT11_Bartha_Molnar_2008_A_XI_META_TURA_Fuzet.pdf (accessed on 16 February 2021).
- Simberloff, D.; Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions 1999, 1, 21–32. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Aparicio, L.G.; Haider, S.; Heger, T.; Lortie, C.J.; Pyšek, P.; Strayer, D.L. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 2012, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
Cover of Weeds | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
A1–A3 | * | ** | ** | * | * | |||||||||||||||||
A1–A2 | * | ** | * | * | * | * | ||||||||||||||||
A2–A3 | * | |||||||||||||||||||||
Number of Weeds | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |
A1–A3 | ** | *** | ** | ** | * | * | *** | *** | * | |||||||||||||
A1–A2 | ** | * | ||||||||||||||||||||
A2–A3 | *** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusvai, K.; Czóbel, S. Changes in Soil Seed Bank and Vegetation at Abandoned Bait Sites in a Central European Hilly Area. Biol. Life Sci. Forum 2021, 2, 15. https://doi.org/10.3390/BDEE2021-09422
Rusvai K, Czóbel S. Changes in Soil Seed Bank and Vegetation at Abandoned Bait Sites in a Central European Hilly Area. Biology and Life Sciences Forum. 2021; 2(1):15. https://doi.org/10.3390/BDEE2021-09422
Chicago/Turabian StyleRusvai, Katalin, and Szilárd Czóbel. 2021. "Changes in Soil Seed Bank and Vegetation at Abandoned Bait Sites in a Central European Hilly Area" Biology and Life Sciences Forum 2, no. 1: 15. https://doi.org/10.3390/BDEE2021-09422
APA StyleRusvai, K., & Czóbel, S. (2021). Changes in Soil Seed Bank and Vegetation at Abandoned Bait Sites in a Central European Hilly Area. Biology and Life Sciences Forum, 2(1), 15. https://doi.org/10.3390/BDEE2021-09422