Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming †
Abstract
:1. Introduction
2. Experiments
2.1. The Study Sites
2.2. Used Methods
3. Results
3.1. Soil Characteristics
3.2. Earthworm Abundance
3.3. Earthworm Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
References
- MEA Millennium Ecosystem Assessment, Ecosystems and Human Well-being: Synthesis; World Resource Institute: Washington, DC, USA, 2005.
- Garbach, K.; Milder, J.C.; Montenegro, M.; Karp, D.S.; De Clerck, F.A.J. Biodiversity and Ecosystem Services in Agroecosystems. Encycl. Agric. Food Syst. 2014, 2, 21–40. [Google Scholar]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Schon, N.L.; Dominati, E.J. Valuing earthworm contribution to ecosystem services delivery. Ecosyst. Serv. 2020, 43, 101092. [Google Scholar] [CrossRef]
- Burke, T.J.; Duncan, W.; Rowland, C.G.; Blackburn, A.; Abbatt, J. The influence of land cover data on farm-scale valuations of natural capital. Ecosyst. Serv. 2020, 42, 101065. [Google Scholar] [CrossRef]
- Ábrám, Ö.; Biró, C.; Morvai, E.; Kovács, E. Ecosystem Services of Lake Kolon. In 26th International Poster Day; Celkova, A., Ed.; Slovak Academy of Sciences: Bratislava, Slovakia; Institute of Hydrology: Bratislava, Slovakia, 2019; pp. 13–19. [Google Scholar]
- Malatinszky, Á. Stakeholder perceptions of climate extremes’ effects on management of protected grasslands in a Central European area. Weather. Soc. 2016, 8, 209–217. [Google Scholar] [CrossRef]
- Nel, L.; Centeri, C.; Kovács, E. Mapping carbon storage on Szentendre Island, Hungary. In Soil’s Contribution to People: From Food to Life Supporting Services: 9th ESSC International Congress, Book of Abstracts and Field excuRsion; Zdruli, P., Sallaku, F., Costantini, E., Dazzi, C., Eds.; Le Penseur: Napoli, Italy, 2019; p. 95. [Google Scholar]
- Centeri, C.; Szabó, B.; Jakab, G.; Kovács, J.; Madarász, B.; Szabó, J.; Tóth, A.; Gelencsér, G.; Szalai, Z.; Vona, M. State of soil carbon in Hungarian sites: Loss, pool and management. In Soil Carbon: Types, Management Practices and Environmental Benefits; Margit, A., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 91–117. [Google Scholar]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Slámová, M.; Jakubec, B.; Hreško, J.; Beláček, B.; Gallay, I. Modification of the potential production capabilities of agricultural terrace soils due to historical cultivation in the Budina cadastral area, Slovakia. Morav. Geogr. Rep. 2015, 23, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Barczi, A.; Ángyán, J.; Podmaniczky, L.; Pirkó, B.; Joó, K.; Centeri, C.; Grónás, V.; Vona, M.; Pető, Á. Suggested landscape and agri-environmental condition assessment. Tájökológiai Lapok 2008, 6, 77–94. [Google Scholar]
- Centeri, C.; Császár, A. A talajképződés és az erózió által kiváltott talajpusztulás kapcsolata a Tihanyi-félsziget példáján. Tájökológiai Lapok 2004, 1, 81–85. [Google Scholar]
- Vona, M.; Centeri, C.; Malatinszky, Á.; Penksza, K. Felhagyott vagy extenzíven művelt szántók kezelésének hatása a növény- és talajtani viszonyokra a Putnoki-dombságban. Természetvédelmi Közlemények 2007, 13, 339–348. [Google Scholar]
- Grónás, V.; Centeri, C.; Magyari, J.; Belényesi, M. Agrár-környezetgazdálkodási programok hatása a kijelölt mintaterületek földhasználatára és természeti értékeinek védelmére. Tájökológiai Lapok 2006, 4, 277–289. [Google Scholar]
- Demény, K.; Centeri, C. Habitat loss, soil and vegetation degradation by land use change in the Gödöllő Hillside, Hungary. Cereal Res. Commun. 2008, 36, 1739–1742. [Google Scholar]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Boecker, D.; Centeri, C.; Welp, G.; Möseler, B.M. Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobot. 2015, 50, 91–106. [Google Scholar] [CrossRef]
- Frantál, B.; Greer-Wootten, B.; Klusáček, P.; Krejčí, T.; Kunc, J.; Martinát, S. Exploring Spatial Patterns of Urban Brownfields Regeneration: The Case of Brno, Czech Republic. Cities 2015, 44, 9–18. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Lüscher, G.; Ammari, Y.; Andriets, A.; Angelova, S.; Arndorfer, M.; Bailey, D.; Balázs, K.; Bogers, M.; Bunce, R.G.H.; Choisis, J.-P.; et al. Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. Ecology 2016, 97, 1625. [Google Scholar]
- Botos, Á.; Tóth, C.A.; Novák, T.J. Changes in soil characteristics after abandonment of cultivation on the mounds of Tiszántúl. Tájökológiai Lapok 2019, 17, 23–31. [Google Scholar]
- Molnár, D. Examination of geometric accuracy of the agricultural monitoring system by landscape-oriented remote sensing methods. Tájökológiai Lapok 2019, 17, 85–91. [Google Scholar]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martin-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Baveye, P.C. Quantification of ecosystem services: Beyond all the “guesstimates”, how do we get real data? Ecosyst. Serv. 2017, 24, 47–49. [Google Scholar] [CrossRef]
- Chalhoub, M.; Gabrielle, B.; Tournebize, J.; Chaumont, C.; Maugis, P.; Girardin, C.; Montagne, D.; Baveye, P.C.; Garnier, P. Direct measurement of selected soil services in a drained agricultural field: Methodology development and case study in Saclay (France). Ecosyst. Serv. 2020, 42, 101088. [Google Scholar] [CrossRef]
- Horváth, E.; Centeri, C.; Biró, Z. Effects of game exclusion on plants and earthworms in the Gödöllő Hillside Landscape Protection Area. In 25th International Poster Day; Celkova, A., Ed.; Slovak Academy of Sciences: Bratislava, Slovakia; Institute of Hydrology: Bratislava, Slovakia, 2018; pp. 14–20. [Google Scholar]
- Knops, J.M.H.; Wedin, D.A.; Tilman, D. Biodiversity and decomposition in experimental grassland ecosystems. Fac. Publ. Biol. Sci. 2001, 126, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Potter, D.A.; Powell, A.J.; Smith, M.S. Degradation of turfgrass thatch by earthworms (Oligochaeta: Lumbricidae) and other soil invertebrates. J. Econ. Entomol. 1990, 83, 205–211. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drobnik, T.; Greiner, L.; Keller, A.; Grêt-Regamey, A. Soil quality indicators–From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Birkás, M. Environmentally-Sound Adaptable Tillage; Akadémiai Kiadó: Budapest, Slovakia, 2008; 354p. [Google Scholar]
- Bai, Z.; Dent, D.; Wu, Y.; de Jong, R. Land Degradation and Ecosystem Services. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Elek, Z.; Balázs, K.; Centeri, C.; Falusi, E.; Jeanneret, P.; Penksza, K.; Podmaniczky, L.; Szalkovszki, L.; Báldi, A. Earthworms, spiders and bees as indicators of habitat quality and management in a low-input farming region—A whole farm approach. Ecol. Indic. 2013, 33, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Belayneh, G.M.; Sebők, A.; Waltner, I. A field-level study of soil penetration resistance, moisture content and infiltration. In Water management: Focus on Climate Change; Jakab, G., Csengeri, E., Eds.; Szent István Egyetem Öntözési és Vízgazdálkodási Intézet: Szarvas, Magyarország, 2020; pp. 24–29. [Google Scholar]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Mollison, B. Permaculture, A Designer’s Manual. Tagari Publications: Sisters Creek, Australia, 1988; 565p. [Google Scholar]
- Hathaway, M. Agroecology and permaculture: Addressing key ecological problems by rethinking and redesigning agricultural systems. J. Environ. Stud. Sci. 2015, 6, 239–250. [Google Scholar] [CrossRef]
- Holmgren, D. Permaculture, Principles & Pathways beyond Sustainability; Permanent Publications: East Meon, UK, 2002; 286p. [Google Scholar]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 1–25. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R.; Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land, an experimental approach. Ecol. Econ. 2008, 64, 835–848. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, G.M. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Tombeur, F.; Sohy, V.; Chenu, C.; Colinet, G.; Cornelis, J.-T. Effects of permaculture practices on soil physicochemical properties and organic matter distribution in aggregates: A case study of the Bec-Hellouin Farm (France). Front. Environ. Sci. 2018, 6, 116. [Google Scholar] [CrossRef]
- Ujj, A. Improvement of Soil Condition and Preceding Crop Effect by Catch Crops and Soil Conservation Tillage (A talajállapot és az elővetemény-hatás javítása köztes védőnövényekkel és kímélő műveléssel). Ph.D. Thesis, Szent Istvan University, Gödöllő, Hungary, 2006. (In Hungarian). [Google Scholar]
- ISO 23611-1:2006 Soil Quality—Sampling of Soil Invertebrates—Part 1: Hand-Sorting and Formalin Extraction of Earthworms. 2006. Available online: https://www.iso.org/standard/36914.html (accessed on 20 February 2020).
- Csuzdi, C.; Zicsi, A. Earthworms of Hungary (Annelida: Oligochaeta, Lumbricidae); Hungarian Natural History Museum: Budapest, Hungary, 2003; 278p. [Google Scholar]
- Csuzdi, C. Magyarország földigiliszta-faunájának áttekintése (Oligochaete, Lumbricidae). (A review of the Hungarian earthworm fauna.). Állattani Közlemények 2007, 92, 3–38. (In Hungarian) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. No. 106. FAO, Rome. World Soil Resources Reports 2015. Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 13 September 2020).
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Gerard, B.M.; Hay, R.K.M. The effect on earthworms of ploughing, tined cultivation, direct drilling and nitrogen in a barely monoculture system. J. Agric. Sci. 1979, 93, 147–155. [Google Scholar] [CrossRef]
- Van Capelle, C.; Schrade, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- House, G.; Parmelee, R.W. Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil Tillage Res. 1985, 5, 351–360. [Google Scholar] [CrossRef]
- Szilágyi, A.; Horváth, E.; Nagy, P.; Simon, B.; Centeri, C. Earthworm and nematode populations in conventional, organic and permaculture farms on Szentendre Island, Hungary: An explorative case study. In Proceedings of the 26th International Poster Day and Institute of Hydrology Open Day, Bratislava, Slovakia, 6 November 2019; pp. 213–221. [Google Scholar]
- Szilágyi, A.; Podmaniczky, L.; Mészáros, D. Environmental sustainability performance of conventional, organic and permaculture farms. Tájökológiai Lapok 2018, 16, 97–112. [Google Scholar]
Farms | Soil Type (WRB, 2015) | Total Thickness of All Humus Layers (cm) |
---|---|---|
P1 | Arenosol | 0–30 |
P2 | Luvisol | 0–30 |
P3 | Luvisol | 0–67 |
P4 | Luvisol | 0–23 |
P5 | Fluvisol | 0–105 |
O1 | Chernozem | 0–58 |
O2 | Arenosol | 0–20 |
O3 | Luvisol | 0–41 |
O4 | Luvisol | 0–20 |
O5 | Luvisol | 0–84 |
C1 | Chernozem | 0–50 |
C2 | Luvisol | 0 |
C3 | Luvisol | 0 |
C4 | Fluvisol | 0–70 |
C5 | Luvisol | 0–100 |
Sampling Date | May | May | May | September | September | September |
---|---|---|---|---|---|---|
Farming system | P | O | C | P | O | C |
Species number (MEAN ± SD) | 3.20 ± 0.84 | 1.20 ± 1.30 | 1.40 ± 1.34 | 3.00 ± 1.22 | 2.60 ± 1.14 | 2.20 ± 1.48 |
Shannon diversity (MEAN ± SD) | 1.01 ± 0.19 | 0.36 ± 0.51 | 0.44 ± 0.41 | 0.81 ± 0.40 | 0.66 ± 0.52 | 0.64 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szilágyi, A.; Plachi, E.; Nagy, P.; Simon, B.; Centeri, C. Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming. Biol. Life Sci. Forum 2021, 2, 11. https://doi.org/10.3390/BDEE2021-09416
Szilágyi A, Plachi E, Nagy P, Simon B, Centeri C. Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming. Biology and Life Sciences Forum. 2021; 2(1):11. https://doi.org/10.3390/BDEE2021-09416
Chicago/Turabian StyleSzilágyi, Alfréd, Evelin Plachi, Péter Nagy, Barbara Simon, and Csaba Centeri. 2021. "Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming" Biology and Life Sciences Forum 2, no. 1: 11. https://doi.org/10.3390/BDEE2021-09416
APA StyleSzilágyi, A., Plachi, E., Nagy, P., Simon, B., & Centeri, C. (2021). Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming. Biology and Life Sciences Forum, 2(1), 11. https://doi.org/10.3390/BDEE2021-09416