Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Preparation
2.3. Extraction
2.4. Total Phenolic Content
2.5. Antioxidant Activity
2.6. Statistical analysis
3. Results
3.1. Preliminary Study
3.2. Extraction Yield and Total Phenolic Content
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. UNEP Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021; Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 1 August 2022).
- Olofsson, J.; Börjesson, P. Residual biomass as resource—Life-cycle environmental impact of wastes in circular resource systems. J. Clean. Prod. 2018, 196, 997–1006. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.-H. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. J. Environ. Manag. 2022, 311, 114806. [Google Scholar]
- Saha, A.; Basak, B.B. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Flores, E.M.M.; Cravotto, G.; Bizzi, C.A.; Santos, D.; Iop, G.D. Ultrasound-assisted biomass valorization to industrial interesting products: State-of-the-art, perspectives and challenges. Ultrason. Sonochem. 2021, 72, 105455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Shi, Y.P. Comprehensive analysis of phenolic compounds in four varieties of goji berries at different ripening stages by UPLC–MS/MS. J. Food Compos. Anal. 2022, 106, 104279. [Google Scholar] [CrossRef]
- Barrón-García, O.Y.; Morales-Sánchez, E.; Ramírez Jiménez, A.K.; Antunes-Ricardo, M.; Luzardo-Ocampo, I.; González-Jasso, E.; Gaytán-Martínez, M. Phenolic compounds profile and antioxidant capacity of ‘Ataulfo’ mango pulp processed by ohmic heating at moderate electric field strength. Food Res. Int. 2022, 154, 111032. [Google Scholar] [CrossRef] [PubMed]
- Macedo, C.; Silva, A.M.; Ferreira, A.S.; Moreira, M.M.; Delerue-Matos, C.; Rodrigues, F. Microwave- and ultrasound-assisted extraction of Cucurbita pepo seeds: A Comparison study of antioxidant activity, phenolic profile, and in-vitro cells effects. Appl. Sci. 2022, 12, 1763. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar]
- Tavares, C.S.; Martins, A.; Miguel, M.G.; Carvalheiro, F.; Duarte, L.C.; Gameiro, J.A.; Figueiredo, A.C.; Roseiro, L.B. Bioproducts from forest biomass II. Bioactive compounds from the steam-distillation by-products of Cupressus lusitanica Mill. and Cistus ladanifer L. wastes. Ind. Crops Prod. 2020, 158, 112991. [Google Scholar] [CrossRef]
- Andrade, D.; Gil, C.; Breitenfeld, L.; Domingues, F.; Duarte, A.P. Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind. Crops Prod. 2009, 30, 165–167. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J. Food Eng. 2017, 199, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef]
- Solomakou, N.; Loukri, A.; Tsafrakidou, P.; Michaelidou, A.M.; Mourtzinos, I.; Goula, A.M. Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustain. Chem. Pharm. 2022, 25, 100592. [Google Scholar] [CrossRef]
- Coelho, J.P.; Filipe, R.M.; Paula Robalo, M.; Boyadzhieva, S.; Cholakov, G.S.; Stateva, R.P. Supercritical CO2 extraction of spent coffee grounds. Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluids 2020, 161, 104825. [Google Scholar] [CrossRef]
- Balzano, M.; Loizzo, M.R.; Tundis, R.; Lucci, P.; Nunez, O.; Fiorini, D.; Giardinieri, A.; Frega, N.G.; Pacetti, D. Spent espresso coffee grounds as a source of anti-proliferative and antioxidant compounds. Innov. Food Sci. Emerg. Technol. 2020, 59, 102254. [Google Scholar] [CrossRef]
- López-Linares, J.C.; García-Cubero, M.T.; Coca, M.; Lucas, S. A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass Bioenergy 2021, 147, 106026. [Google Scholar] [CrossRef]
Extraction | H2O:MeOH | Temperature (°C) | Time (h) | Volume (mL) | Yield (%) | TPC (mg GAE/g dw) 1 |
---|---|---|---|---|---|---|
M1_25 | 50:50 | 25 | 1 | 50 | 43.56 | 14.56 ± 1.82 a,b |
M2_25 | 1 | 100 | 51.9 | 17.74 ± 0.82 b,c | ||
M3_25 | 2 | 50 | 43.38 | 13.02 ± 2.23 a | ||
M4_25 | 2 | 100 | 57.63 | 17.40 ± 0.84 b,c | ||
M1_40 | 50:50 | 40 | 1 | 50 | 54.16 | 21.23 ± 1.46 d |
M2_40 | 1 | 100 | 60.68 | 18.00 ± 1.65 b,c,d | ||
M3_40 | 2 | 50 | 47.91 | 19.60 ± 2.48 c,d | ||
M4_40 | 2 | 100 | 59.3 | 18.11 ± 2.01 b,c | ||
M1_60 | 50:50 | 60 | 1 | 50 | 21.51 | 16.23 ± 1.78 a,b |
M2_60 | 1 | 100 | 55.65 | 20.65 ± 1.09 d | ||
M3_60 | 2 | 50 | 44.43 | 17.60 ± 1.47 b,c | ||
M4_60 | 2 | 100 | 54.87 | 22.63 ± 2.60 d | ||
M80:20 | 20:80 | 60 | 1 | 50 | 56.3 | 18.15 ± 1.81 b,c |
M100 | 0:100 | 60 | 1 | 50 | 53.06 | 18.30 ± 1.86 b,c |
Sample | Extraction Conditions | Yield (%) | TPC (mg GAE/g dw) 1 | DPPH• IC50 (µg/mL) | ABTS•+ IC50 (µg/mL) | FRAP (mg AAE/g dw) 1 |
---|---|---|---|---|---|---|
Mango (M) | M1_40 | 54.16 | 21.23 ± 1.46 a | 253.88±38.96 a | 89.51 ± 9.74 a | 6.58 ± 0.40 a,b |
M2_60 | 55.65 | 20.65 ± 1.09 a | 212.23 ± 7.99 a | 84.39 ± 2.71 a | 8.10 ± 1.17 a,b | |
Raspberry (R) | R1_40 | 37.18 | 8.80 ± 1.25 a,b | 360.59 ± 16.67 a | 171.39 ± 11.14 a,b | 3.69 ± 1.73 b |
R2_60 | 35.52 | 8.31 ± 1.37 a,b | - * | 207.46 ± 6.41 a,c | 4.43 ± 0.27 b | |
Stevia (S) | S1_40 | 6.43 | 19.76 ± 7.47 a,b | 264.84 ± 23.51 a | 101.84 ± 4.36 a | 15.47 ± 2.27 c,d |
S2_60 | 5.80 | 57.29 ± 19.13c | 119.73 ± 7.02 a | 68.58 ± 3.57 a | 22.32 ± 3.25 d | |
Labdanum leaves (LL) | LL1_40 | 27.22 | 175.24 ± 21.82 d | 20.54 ± 1.42 a | 7.33 ± 0.59 a | 10.91 ± 2.03 a,c |
LL2_60 | 36.49 | 146.53 ± 11.68 e | 18.68 ± 0.25 a | 9.21 ± 0.05 a | 11.64 ± 2.96 a,c | |
Labdanum stems (LS) | LS1_40 | 11.31 | 201.16 ± 4.02 f | 24.66 ± 2.40 a | 9.52 ± 0.56 a | 2.05 ± 0.57 b |
LS2_60 | 20.69 | 158.31 ± 24.62 d,e | 64.72 ± 37.57 a | 7.03 ± 0.38 a | 9.42 ± 0.91 a,b,c | |
Oat concentrate (OC) | OC1_40 | 44.95 | 4.08 ± 1.56 b | - ** | - * | 0.70 ± 0.06 b |
OC2_60 | 59.92 | 4.52 ± 1.38 b | - ** | 1587.72 ± 294.12 d | 0.89 ± 0.18 b | |
Spent coffee grounds (SCG) | SCG1_40 | 22.61 | 134.64 ± 14.73 e | 41.18 ± 0.74 a | 17.15 ± 0.60 a | 86.06 ± 5.74 e |
SCG2_60 | 25.08 | 104.30 ± 14.56 g | 29.31 ± 0.29 a | 16.99 ± 0.61 a | 79.66 ± 11.34 f | |
Coffee silverskins (CS) | CS1_40 | 10.48 | 23.56 ± 5.54 a | 389.11 ± 6.68 a | 155.12 ± 10.19 a,b | 10.63 ± 2.73 a,c |
CS2_60 | 13.81 | 32.93 ± 8.90 a | 120.58 ± 16.77 a | 45.40 ± 5.17 a | 20.39 ± 3.14 d | |
Frozen coffee silverskins (FCS) | FCS1_40 | 12.07 | 53.58 ± 6.11 c | 118.88 ± 11.99 a | 42.10 ± 1.25 a | 30.60 ± 6.81 g |
FCS2_60 | 17.44 | 67.33 ± 9.49 c | 79.25 ± 3.95 a | 43.13 ± 3.73 a | 27.84 ± 7.68 d,g | |
Pineapple peels (PP) | PP1_40 | 42.91 | 7.37 ± 1.90 a,b | - * | 400.11 ± 105.54 c | 1.35 ± 0.33 b |
PP2_60 | 48.39 | 7.92 ± 1.08 a,b | - * | 334.45 ± 10.96 b,c | 1.64 ± 0.25 b | |
Pineapple cores (PC) | PC1_40 | 57.58 | 4.58 ± 1.34 b | - * | - * | 1.27 ± 0.49 b |
PC2_60 | 64.70 | 4.60 ± 1.07b | 4714,81±198.74b | - * | 1.69 ± 0.14 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.; Gorissen, K.; Delerue-Matos, C.; Grosso, C. Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds. Biol. Life Sci. Forum 2022, 18, 61. https://doi.org/10.3390/Foods2022-13032
Fernandes F, Gorissen K, Delerue-Matos C, Grosso C. Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds. Biology and Life Sciences Forum. 2022; 18(1):61. https://doi.org/10.3390/Foods2022-13032
Chicago/Turabian StyleFernandes, Filipe, Kiano Gorissen, Cristina Delerue-Matos, and Clara Grosso. 2022. "Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds" Biology and Life Sciences Forum 18, no. 1: 61. https://doi.org/10.3390/Foods2022-13032
APA StyleFernandes, F., Gorissen, K., Delerue-Matos, C., & Grosso, C. (2022). Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds. Biology and Life Sciences Forum, 18(1), 61. https://doi.org/10.3390/Foods2022-13032