Extraction and Characterization of Chamomile (Matricaria recutita L.) Essential Oil Using the Green Technology of Solvent-Free Microwave Extraction †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Extraction
2.2. Physicochemical Analyses
2.3. GC-MS Analyses
3. Results
3.1. Physicochemical Analyses
3.2. GC-MS Analyses
3.3. Yield
4. Discussions
4.1. Physicochemical Analyses
4.2. GC-MS Analyses
4.3. Yields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J. Chemical Composition, Antioxidant and Antimicrobial Activity of Chamomile Flowers Essential Oil (Matricaria Chamomilla L.). J. Essent. Oil-Bear. Plants 2016, 19, 2017–2028. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria Chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; González-Burgos, E.; Gómez-Serranillos, M.P. The Pharmacology and Clinical Efficacy of Matricaria Recutita L.: A Systematic Review of in Vitro, in Vivo Studies and Clinical Trials. Food Rev. Int. 2020, 38, 1668–1702. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M.; et al. Matricaria Genus as a Source of Antimicrobial Agents: From Farm to Pharmacy and Food Applications. Microbiol. Res. 2018, 215, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Singh, S.; Kumar, V.; Kumar, A.; Kumari, A.; Rathore, S.; Kumar, R.; Singh, S. A Comprehensive Review on Biology, Genetic Improvement, Agro and Process Technology of German Chamomile (Matricaria Chamomilla L.). Plants 2022, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Khalili, G.; Mazloomifar, A.; Larijani, K.; Tehrani, M.S.; Azar, P.A. Solvent-Free Microwave Extraction of Essential Oils from Thymus Vulgaris L. and Melissa Officinalis L. Ind. Crops Prod. 2018, 119, 214–217. [Google Scholar] [CrossRef]
- Araujo, A.R.T.S.; Périno, S.; Fernandez, X.; Cunha, C.; Rodrigues, M.; Ribeiro, M.P.; Jordao, L.; Silva, L.A.; Rodilla, J.; Coutinho, P.; et al. Solvent-free Microwave Extraction of Thymus Mastichina Essential Oil: Influence on Their Chemical Composition and on the Antioxidant and Antimicrobial Activities. Pharmaceuticals 2021, 14, 709. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Robustelli Della Cuna, F.S.; Russo, E.; Ibrahim, M.F.; Grignani, E.; Preda, S. Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x Damascena Mill. Fresh Petals for Cosmetic Applications. Molecules 2022, 27, 3963. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.; Rezwanee, F.; Hassanzadeh Khayyat, M.; Lackzian, A. The Effect of Different Levels of Vermicompost and Irrigation on Morphological Properties and Essential Oil Content of German Chamomile (Matricaria Recutita) C.V. Goral. Planta Med. 2008, 74, PE3. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Musa Özcan, M.; Al-Juhaimi, F.Y.; Mohamed Ahmed, I.A.; Osman, M.A.; Gassem, M.A. Effect of Different Microwave Power Setting on Quality of Chia Seed Oil Obtained in a Cold Press. Food Chem. 2019, 278, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Aydinkaptan, E.; Mazi, B.G.; Barutçu Mazi, I. Microwave Heating of Sunflower Oil at Frying Temperatures: Effect of Power Levels on Physicochemical Properties. J. Food Process Eng. 2017, 40, e12402. [Google Scholar] [CrossRef]
- El Joumaa, M.M.; Borjac, J.M. Matricaria Chamomilla: A Valuable Insight into Recent Advances in Medicinal Uses and Pharmacological Activities. Phytochem. Rev. 2022. [Google Scholar] [CrossRef]
- Radivojac, A.; Bera, O.; Micić, D.; Đurović, S.; Zeković, Z.; Blagojević, S.; Pavlić, B. Conventional versus Microwave-Assisted Hydrodistillation of Sage Herbal Dust: Kinetics Modeling and Physico-Chemical Properties of Essential Oil. Food Bioprod. Process. 2020, 123, 90–101. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Goyal, S.N.; Agrawal, Y.O.; Subramanya, S.B.; Bastaki, S.M.A.; Ojha, S. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022, 14, 1370. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Pharmacological and Biological Effects of Alpha-Bisabolol: An Updated Review of the Molecular Mechanisms. Life Sci. 2022, 304, 120728. [Google Scholar] [CrossRef] [PubMed]
- Homami, S.S.; Jaimand, K.; Rezaee, M.B.; Afzalzadeh, R. Comparative Studies of Different Extraction Methods of Essential Oil from Matricaria Recutita L. in Iran. J. Chil. Chem. Soc. 2016, 61, 2982–2984. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Rajabi, M.; Mousa, S.A. Solvent-Free Microwave Extraction: An Eco-Friendly and Rapid Process for Green Isolation of Essential Oil from Lemongrass. Nat. Prod. Res. 2022, 36, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Zhu, Z.; Huang, D.; Qi, Y.; Ma, C.; Zou, Z.; Ni, H. Cinnamomum Camphora Fruit Peel as a Source of Essential Oil Extracted Using the Solvent-Free Microwave-Assisted Method Compared with Conventional Hydrodistillation. LWT 2022, 153, 112549. [Google Scholar] [CrossRef]
- Taktak, O.; Ben Youssef, S.; Abert Vian, M.; Chemat, F.; Allouche, N. Physical and Chemical Influences of Different Extraction Techniques for Essential Oil Recovery from Citrus Sinensis Peels. J. Essent. Oil-Bear. Plants 2021, 24, 290–303. [Google Scholar] [CrossRef]
Peak | RT | Chemical Compound | SFME (%Area) | SD (%Area) |
---|---|---|---|---|
1 | 1.663 | Solvents | 13.55 | 13.53 |
2 | 3.721 | Ethyl isobutyrate (traces) | 0.00 | 0.00 |
3 | 5.689 | Ethyl 2-methylbutyrate | 0.11 | 1.74 |
4 | 5.771 | Ethyl 3-methylbutyrate | 0.02 | 0.04 |
5 | 8.390 | α-pinene | 0.03 | 0.10 |
6 | 8.930 | Propyl 2-methylbutyrate | 0.08 | 0.44 |
7 | 9.193 | Butyl isobutyrate | 0.01 | 0.03 |
8 | 9.869 | Sabinene | 0.04 | 0.12 |
9 | 9.956 | β-pinene | 0.01 | 0.01 |
10 | 10.208 | 1-Octen-3-ol (traces) | 0.00 | 0.01 |
11 | 10.412 | 6-methyl-5-hepten-2-one | 0.06 | 0.44 |
12 | 10.561 | 2-pentylfuran | 0.15 | 0.19 |
13 | 10.758 | Cis-β-Ocimene I | 0.03 | 0.07 |
14 | 11.708 | p-Cymene | 0.18 | 0.36 |
15 | 11.851 | Limonene | 0.51 | 0.72 |
16 | 11.920 | Eucalyptol | 0.06 | 0.60 |
17 | 12.205 | Trans- β-Ocimene | 0.09 | 0.20 |
18 | 12.342 | Butyl 2-methylbutyrate | 0.13 | 0.43 |
19 | 12.578 | Cis-β-Ocimene II | 0.58 | 1.39 |
20 | 12.917 | γ-Terpinene | 0.5 | 1.10 |
21 | 13.000 | Artemisia ketone A | 2.38 | 0.45 |
22 | 13.097 | Trans-2-pentenal | 0.00 | 4.67 |
23 | 13.321 | Trans-2-Octenol | 0.00 | 0.09 |
24 | 13.806 | Artemisia alcohol | 0.11 | 0.94 |
25 | 14.325 | Linalol | 0.03 | 0.10 |
26 | 14.489 | Isoamyl isovalerate | 0.09 | 0.15 |
27 | 17.597 | Artemisia ketone B | 0.01 | 0.05 |
28 | 19.873 | Cis-3-Hexenyl valerate | 0.39 | 0.69 |
29 | 20.119 | Hexyl isovalerate | 0.11 | 0.21 |
30 | 20.242 | Trans-2-Hexenyl valerate | 0.10 | 0.27 |
31 | 21.287 | Methyl trans-2-nonenoate | 0.02 | 0.08 |
32 | 25.063 | β-Elemene | 4.76 | 5.89 |
33 | 26.533 | Cis- β-Farnesene | 1.75 | 1.93 |
34 | 26.647 | β-Caryophyllene | 17.47 | 13.18 |
35 | 27.184 | Germacrene-D | 5.49 | 4.11 |
36 | 27.282 | β-Selinene | 2.22 | 1.02 |
37 | 27.491 | Bicyclogermacrene | 2.14 | 2.14 |
38 | 27.641 | α-Farnesene | 2.99 | 3.09 |
39 | 28.550 | Nerolido (traces)l | 0.43 | 0.00 |
40 | 28.724 | Caryophyllene oxide | 1.77 | 1.47 |
41 | 30.579 | α-Bisabolol oxide B | 10.88 | 12.18 |
42 | 31.121 | α-Bisabolol | 24.72 | 20.60 |
43 | 31.865 | Chamazulene | 4.46 | 2.27 |
44 | 32.081 | α-Bisbolol oxide A | 1.53 | 2.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, E.; Pacheco, C.; Olivera-Montenegro, L. Extraction and Characterization of Chamomile (Matricaria recutita L.) Essential Oil Using the Green Technology of Solvent-Free Microwave Extraction. Biol. Life Sci. Forum 2022, 18, 12974. https://doi.org/10.3390/Foods2022-12974
Herrera E, Pacheco C, Olivera-Montenegro L. Extraction and Characterization of Chamomile (Matricaria recutita L.) Essential Oil Using the Green Technology of Solvent-Free Microwave Extraction. Biology and Life Sciences Forum. 2022; 18(1):12974. https://doi.org/10.3390/Foods2022-12974
Chicago/Turabian StyleHerrera, Esteban, Claudia Pacheco, and Luis Olivera-Montenegro. 2022. "Extraction and Characterization of Chamomile (Matricaria recutita L.) Essential Oil Using the Green Technology of Solvent-Free Microwave Extraction" Biology and Life Sciences Forum 18, no. 1: 12974. https://doi.org/10.3390/Foods2022-12974
APA StyleHerrera, E., Pacheco, C., & Olivera-Montenegro, L. (2022). Extraction and Characterization of Chamomile (Matricaria recutita L.) Essential Oil Using the Green Technology of Solvent-Free Microwave Extraction. Biology and Life Sciences Forum, 18(1), 12974. https://doi.org/10.3390/Foods2022-12974