Effects of Curcumin Intake on CVD Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers—An Exploratory Study †
Abstract
:1. Introduction
2. Methods and Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Min, K.; Talbert, E.E.; Kavazis, A.N.; Smuder, A.J.; Willis, W.T.; Powers, S.K. Exercise Protects Cardiac Mitochondria against Ischemia–Reperfusion Injury. Med. Sci. Sports Exerc. 2012, 44, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.P.; Kayani, A.C.; McArdle, A.; Drust, B. The Exercise-Induced Stress Response of Skeletal Muscle, with Specific Emphasis on Humans. Sports Med. 2009, 39, 643–662. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.G.; Kyparos, A.; Spanou, C.; Paschalis, V.; Theodorou, A.A.; Vrabas, I.S. Redox biology of exercise: An integrative and comparative consideration of some overlooked issues. J. Exp. Biol. 2012, 215, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Zielinski, M.R.; Groschwitz, C.M.; Brown, A.S.; Gangemi, J.D.; Ghaffar, A.; Mayer, E.P. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am. J. Physiol. Integr. Comp. Physiol. 2007, 292, R2168–R2173. [Google Scholar] [CrossRef] [Green Version]
- Retamoso, L.T.; Silveira, M.E.; Lima, F.D.; Busanello, G.L.; Bresciani, G.; Ribeiro, L.; Chagas, P.M.; Nogueira, C.W.; Braga, A.C.M.; Furian, A.F.; et al. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats. Life Sci. 2016, 152, 52–59. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Ansarin, K.; Jouyban, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts 2015, 5, 123–127. [Google Scholar]
- Kohara, K. Central blood pressure, arterial stiffness and the heart in hypertensive patients. Hypertens. Res. 2009, 32, 1056–1058. [Google Scholar] [CrossRef]
- Lee, R.; Margaritis, M.; Channon, K.; Antoniades, C. Evaluating Oxidative Stress in Human Cardiovascular Disease: Methodological Aspects and Considerations. Curr. Med. Chem. 2012, 19, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Med. Cell. Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods 2017, 6, 10–92. [Google Scholar] [CrossRef] [PubMed]
- Amro, B.I.; Hajleh, M.N.A.; Afifi, F. Evidence-Based Potential of some Edible, Medicinal and Aromatic Plants as Safe Cosmetics and Cosmeceuticals. Trop. J. Nat. Prod. Res. 2021, 5, 16–48. [Google Scholar] [CrossRef]
- Boarescu, P.M.; Boarescu, I.; Bocșan, I.C.; Gheban, D.; Bulboacă, A.E.; Nicula, C.; Pop, R.M.; Râjnoveanu, R.-M.; Bolboacă, S.D. Antioxidant and Anti-Inflammatory Effects of Curcumin Nanoparticles on Drug-Induced Acute Myocardial Infarction in Diabetic Rats. Antioxidants 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Kuszewski, J.C.; Howe, P.R.C.; Wong, R.H.X. An Exploratory Analysis of Changes in Mental Wellbeing Following Curcumin and Fish Oil Supplementation in Middle-Aged and Older Adults. Nutrients 2020, 12, 2902. [Google Scholar] [CrossRef]
- Scazzocchio, B.; Minghetti, L.; D’Archivio, M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar]
- Fang, W.; Nasir, Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2021, 35, 1768–1781. [Google Scholar] [CrossRef]
- Moriyuki, K.; Sekiguchi, F.; Matsubara, K.; Nishikawa, H.; Kawabata, A. Curcumin inhibits the proteinase-activated receptor-2–triggered prostaglandin E2 production by suppressing cyclooxygenase-2 upregulation and Akt-dependent activation of nuclear factor-κB in human lung epithelial cells. J. Pharmacol. Sci. 2010, 114, 225–229. [Google Scholar] [CrossRef]
- Jäger, R.; Caldwell, A.R.; Sanders, E.; Mitchell, J.B.; Rogers, J.; Purpura, M.; Oliver, J.M. Curcumin reduces muscle damage and soreness following muscle-damaging exercise. FASEB J. 2017, 31, lb766. [Google Scholar] [CrossRef]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef] [Green Version]
- Blanton, C.; Gordon, B. Effect of Morning vs. Evening Turmeric Consumption on Urine Oxidative Stress Biomarkers in Obese, Middle-Aged Adults: A Feasibility Study. Int. J. Environ. Res. Public Health 2020, 17, 4088. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, M.-C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2015, 18, 898–909. [Google Scholar] [CrossRef]
- Neves, M.R.C.A.T.D.P.M.F.; Cunha, M.R.; De Paula, T. Effects of Nutrients and Exercises to Attenuate Oxidative Stress and Prevent Cardiovascular Disease. Curr. Pharm. Des. 2019, 24, 4800–4806. [Google Scholar] [CrossRef]
- Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr. J. 2017, 16, 68. [Google Scholar] [CrossRef]
- Santos-Parker, J.R.; Strahler, T.R.; Bassett, C.J.; Bispham, N.Z.; Chonchol, M.B.; Seals, D.R. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging 2017, 9, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Tabrizi, R.; Vakili, S.; Akbari, M.; Mirhosseini, N.; Lankarani, K.B.; Rahimi, M.; Mobini, M.; Jafarnejad, S.; Vahedpoor, Z.; Asemi, Z. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 253–262. [Google Scholar] [CrossRef]
- Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules 2020, 25, 1397. [Google Scholar] [CrossRef] [Green Version]
Intervention | Polyphenol Concentration (mg GAE/day) | p-Value | |
---|---|---|---|
Basal | Placebo | 293.3 ± 73.3 | - |
Curcumin | 276.3 ± 92.2 | 0.275 | |
First Run (Pre-Intervention) | Placebo | 304.8 ± 95.2 | 0.659 |
Curcumin | 282.7 ± 85.7 | 0.772 | |
Last-Run (Post Intervention) | Placebo | 318.4 ± 57.1 | 0.254 |
Curcumin | 405.9 ± 132.6 | 0.022 |
Curcumin | SBP | DBP | ||||
---|---|---|---|---|---|---|
Pre Exer | Post Exer | Δ Change | Pre Exer | Post Exer | Δ Change | |
Basal | 121.8 ± 12.0 | - | 75.5 ± 6.9 | - | ||
First run | 124.3 ± 11.8 | 139.8 ± 14.5 *** | 15.5 ± 9.6 | 74.5 ± 5.4 | 81.8 ± 6.0 ** | 7.3 ± 7.2 |
Last run | 126.4 ± 13.5 | 133.7 ± 15.3 * | 7.3 ± 7.0 * | 76.3 ± 8.6 | 78.6 ± 7.2 NS | 2.3 ± 6.9 * |
Placebo | Pre Exer | Post Exer | Pre Exer | Post Exer | ||
Basal | 120.6 ± 12.2 | - | 73.9 ± 7.5 | - | ||
First run | 123.6 ± 14.2 | 138.1 ± 12.5 *** | 14.5 ± 6.1 | 73.4 ± 3.1 | 80.6 ± 5.1 *** | 7.2 ± 4.8 |
Last run | 123.5 ± 13.0 | 137.3 ± 11.6 ** | 13.8 ± 6.3 NS | 70.1 ± 7.8 | 78.1 ± 6.2 * | 8.0 ± 6.8 NS |
Intervention | Antioxidant Concentration (mmol Fe+2/day) | p-Value | |
---|---|---|---|
Basal | Placebo | 3.04 ± 0.57 | - |
Curcumin | 2.81 ± 1.8 | 0.216 | |
First Run (Pre-Intervention) | Placebo | 3.05 ± 0.42 | 0.956 |
Curcumin | 3.12 ± 1.29 | 0.558 | |
Last-Run (Post Intervention) | Placebo | 3.43 ± 1.22 | 0.839 |
Curcumin | 3.75 ± 0.94 | 0.031 |
Intervention | MDA Concentration (μmol/day) | p-Value | |
---|---|---|---|
Basal | Placebo | 2.263 ± 0.74 | - |
Curcumin | 2.249 ± 0.91 | 0.825 | |
First Run (Pre-Intervention) | Placebo | 3.422 ± 0.97 | 0.026 |
Curcumin | 3.472 ± 1.2 | 0.002 | |
Last-Run (Post Intervention) | Placebo | 3.627 ± 1.43 | 0.040 |
Curcumin | 2.662 ± 0.68 | 0.328 |
Curcumin | First Run | Last Run | p-Value |
---|---|---|---|
Distance (km) | 3.66 ± 0.81 | 3.97 ± 0.94 | 0.005 |
Speed (km/h) | 7.32 ± 1.61 | 7.45 ± 1.99 | 0.227 |
Borg Scale | 4.08 ± 1.38 | 3.51 ± 1.1 | 0.131 |
Placebo | First Run | Last Run | p-Value |
Distance (km) | 3.38 ± 0.84 | 3.66 ± 0.72 | 0.186 |
Speed (km/h) | 6.85 ± 1.67 | 7.22 ± 1.44 | 0.219 |
Borg Scale | 4.13 ± 1.69 | 4.06 ± 0.95 | 0.924 |
Placebo (n = 10) | Curcumin (n = 12) | Significance p-Value | |
---|---|---|---|
Age | 21.8 ± 2.2 | 22.1 ± 1.7 | 0.729 |
BMI (kg/m2) | 24.7 ± 3.8 | 25.8 ± 5.3 | 0.524 |
Caffeine intake (cups/day) | 0.8 ± 1.1 | 1.2 ± 1.1 | 0.336 |
Baseline PWV (m/s) | 7.49 ± 0.6 | 7.51 ± 0.9 | 0.564 |
Exercise (h/week) | 2.6 ± 1.3 | 1.8 ± 1.6 | 0.452 |
SBP (mmHg) | 120.7 ± 12.4 | 123.4 ± 15.2 | 0.871 |
DBP (mmHg) | 73.9 ± 7.5 | 75.5 ± 6.9 | 0.682 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dujaili, E.A.S.; Hajleh, M.N.A. Effects of Curcumin Intake on CVD Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers—An Exploratory Study. Biol. Life Sci. Forum 2022, 12, 29. https://doi.org/10.3390/IECN2022-12363
Al-Dujaili EAS, Hajleh MNA. Effects of Curcumin Intake on CVD Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers—An Exploratory Study. Biology and Life Sciences Forum. 2022; 12(1):29. https://doi.org/10.3390/IECN2022-12363
Chicago/Turabian StyleAl-Dujaili, Emad A. S., and Maha N. Abu Hajleh. 2022. "Effects of Curcumin Intake on CVD Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers—An Exploratory Study" Biology and Life Sciences Forum 12, no. 1: 29. https://doi.org/10.3390/IECN2022-12363
APA StyleAl-Dujaili, E. A. S., & Hajleh, M. N. A. (2022). Effects of Curcumin Intake on CVD Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers—An Exploratory Study. Biology and Life Sciences Forum, 12(1), 29. https://doi.org/10.3390/IECN2022-12363