Galactolipids as Potential Biomarkers for Early Diagnosis of Esca Complex Disease in Asymptomatic Grapevine †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escudero, V.; Jordá, L.; Sopeña-Torres, S.; Mélida, H.; Miedes, E.; Muñoz-Barrios, A.; Swami, S.; Alexander, D.; McKee, L.S.; Sánchez-Vallet, A.; et al. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein. Plant J. 2017, 92, 386–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demidchik, V.; Maathuis, F.; Voitsekhovskaja, O. Unravelling the plant signalling machinery: An update on the cellular and genetic basis of plant signal transduction. Funct. Plant Biol. 2017, 45, 1–8. [Google Scholar] [CrossRef]
- Gao, Q.-M.; Yu, K.; Xia, Y.; Shine, M.B.; Wang, C.; Navarre, D.; Kachroo, A.; Kachroo, P. Mono- and Digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 2014, 9, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Tenenboim, H.; Burgos, A.; Willmitzer, L.; Brotman, Y. Using lipidomics for expanding the knowledge on lipid metabolism in plants. Biochimie 2016, 130, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Marques, C.A.; Cortez, I. Exhibition of local but not systemic induced phenolic defenses in Vitis vinifera L. affected by brown wood streaking, grapevine leaf stripe, and apoplexy (Esca complex). Plants 2019, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Calzarano, F.; Pagnani, G.; Pisante, M.; Bellocci, M.; Cillo, G.; Metruccio, E.G.; Di Marco, S. Factors involved on tiger-stripe foliar symptom expression of esca of grapevine. Plants 2021, 10, 1041. [Google Scholar] [CrossRef]
- Sofia, J.; Trovão, J.; Portugal, A.; Paiva de Carvalho, H.; Mesquita, N.; Nascimento, T.; Rego, C.; Gonçalves, M. Molecular and phenotypic characterisation of Phaeomoniella chlamydospora isolates from the demarcated wine region of Dão (Portugal). Phytopathol. Mediterr. 2015, 54, 403–413. [Google Scholar] [CrossRef]
- Del Frari, G.; Oliveira, H.; Boavida Ferreira, R. White rot fungi (Hymenochaetales) and esca of grapevine: Insights from recent microbiome studies. J. Fungi 2021, 7, 770. [Google Scholar] [CrossRef]
- Pacetti, A.; Moretti, S.; Pinto, C.; Compant, S.; Farine, S.; Bertsch, C.; Mugnai, L. Trunk surgery as a tool to reduce foliar symptoms in diseases of the esca complex and its influence on grapevine wood microbiota. J. Fungi 2021, 7, 521. [Google Scholar] [CrossRef]
- Alessandrini, M.; Rivera, L.C.F.; Falaschetti, L.; Paub, D.; Tomaselli, V.; Turchettia, C. A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Data Brief 2021, 35, 106809. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Saito, K. Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog. Lipid Res. 2019, 75, 100990. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-W.; Lin, Y.-T.; Li, H.-M. Increased ratio of galactolipid MGDG: DGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytol. 2020, 228, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Laureano, G.; Figueiredo, J.; Cavaco, A.R.; Duarte, B.; Caçador, I.; Malho, R.; Silva, M.S.; Matos, A.R.; Figueiredo, A. The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci. Rep. 2018, 8, 14538. [Google Scholar] [CrossRef] [PubMed]
- Laureano, G.; Cavaco, A.R.; Matos, A.R.; Figueiredo, A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew. Int. J. Mol. Sci. 2021, 22, 5473. [Google Scholar] [CrossRef]
- Cavaco, A.R.; Laureano, G.; Cunha, J.; Eiras-Dias, J.; Matos, A.R.; Figueiredo, A. Fatty acid modulation and desaturase gene expression are differentially triggered in grapevine incompatible interaction with biotrophs and necrotrophs. Plant Physiol. Biochem. 2021, 163, 230–238. [Google Scholar] [CrossRef]
- Goufo, P.; Cortez, I. A Lipidomic analysis of leaves of esca-affected grapevine suggests a role for galactolipids in the defense response and appearance of foliar symptoms. Biology 2020, 9, 268. [Google Scholar] [CrossRef]
- Goufo, P.; Cortez, I. Dataset of levels and masses of lipid species in healthy, asymptomatic and symptomatic leaves of Vitis vinifera L. ‘Malvasia Fina’ affected by Esca complex disease. Data Brief 2020, 33, 106469. [Google Scholar] [CrossRef]
- Figueiredo, A.; Martins, J.; Sebastiana, M.; Guerreiro, A.; Silva, S.; Matos, A.R.; Monteiro, F.; Pais, M.S.; Roepstorff, P.; Coelho, A.V. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. J. Proteomics 2017, 152, 48–57. [Google Scholar] [CrossRef]
- Fleurat-Lessard, P.; Luini, P.; Berjeaud, J.-M.; Roblin, G. Diagnosis of grapevine esca disease by immunological detection of Phaeomoniella chlamydospora. Aus. J. Grape Wine Res. 2010, 16, 455–463. [Google Scholar] [CrossRef]
- Bendel, N.; Kicherer, A.; Backhaus, A.; Klück, H.C.; Seiffert, U.; Fischer, M.; Voegele, R.T.; Töpfer, R. Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Plant Methods 2020, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Levasseur-Garcia, C.; Malaurie, H.; Mailhac, N. An infrared diagnostic system to detect causal agents of grapevine trunk diseases. J. Microbiol. Methods 2016, 131, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Galactolipids | Abbreviation | CTL | ASY | SY1 | SY2 |
---|---|---|---|---|---|
1-palmitoyl-2-linoleoyl-galactosylglycerol (16:0/18:2) | 34:2-MGDG | 1.10 | 1.29 | 0.88 | 0.85 |
1-palmitoyl-2-linolenoyl-galactosylglycerol (16:0/18:3) | 34:3-MGDG | 1.04 | 1.25 | 0.97 | 0.76 |
1,2-dilinoleoyl-galactosylglycerol (18:2/18:2) | 34:4-MGDG | 1.02 | 1.12 | 0.94 | 0.93 |
1-linoleoyl-2-linolenoyl-galactosylglycerol (18:2/18:3) | 36:5-MGDG | 1.19 | 1.23 | 0.83 | 0.83 |
1-linolenoyl-2-hexadecatrienoyl-galactosylglycerol (18:3/16:3) | 34:6-MGDG | 1.12 | 1.39 | 0.94 | 0.75 |
1,2-dilinolenoyl-galactosylglycerol (18:3/18:3) | 36:6-MGDG | 1.03 | 1.13 | 0.94 | 0.85 |
1-palmitoyl-2-linoleoyl-digalactosylglycerol (16:0/18:2) | 34:2-DGDG | 1.03 | 1.22 | 0.85 | 0.87 |
1-palmitoyl-2-linolenoyl-digalactosylglycerol (16:0/18:3) | 34:3-DGDG | 1.01 | 1.20 | 0.98 | 0.80 |
1,2-dilinoleoyl-digalactosylglycerol (18:2/18:2) | 36:4-DGDG | 0.97 | 1.07 | 0.95 | 0.93 |
1-linoleoyl-2-linolenoyl-digalactosylglycerol (18:2/18:3) | 36:5-DGDG | 1.10 | 1.16 | 0.82 | 0.83 |
1,2-dilinolenoyl-digalactosylglycerol (18:3/18:3) | 36:6-DGDG | 1.02 | 1.15 | 0.94 | 0.82 |
monogalactosylglycerol | MGDG | 0.88 | 0.87 | 1.46 | 1.13 |
digalactosylglycerol | DGDG | 1.10 | 1.30 | 0.93 | 0.73 |
Lyso-galactolipids | Abbreviation | CTL | ASY | SY1 | SY2 |
---|---|---|---|---|---|
1-linolenoyl-galactosylglycerol (18:3) | 18:3-LMGDG(1) | 1.32 | 1.24 | 1.02 | 0.43 |
1-palmitoyl-digalactosylglycerol (16:0) | 16:0-LDGDG(1) | 0.45 | 0.50 | 0.61 | 0.67 |
1-linolenoyl-digalactosylglycerol (18:3) | 18:3-LDGDG(1) | 1.06 | 1.09 | 1.14 | 0.59 |
2-linolenoyl-galactosylglycerol (18:3) | 18:3-LMGDG(2) | 1.23 | 1.16 | 1.22 | 0.42 |
2-palmitoyl-digalactosylglycerol (16:0) | 16:0-LDGDG(2) | 0.75 | 0.60 | 0.91 | 0.47 |
2-linolenoyl-digalactosylglycerol (18:3) | 18:3-LDGDG(2) | 1.26 | 1.17 | 1.44 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goufo, P.; Cortez, I. Galactolipids as Potential Biomarkers for Early Diagnosis of Esca Complex Disease in Asymptomatic Grapevine. Biol. Life Sci. Forum 2022, 11, 82. https://doi.org/10.3390/IECPS2021-11984
Goufo P, Cortez I. Galactolipids as Potential Biomarkers for Early Diagnosis of Esca Complex Disease in Asymptomatic Grapevine. Biology and Life Sciences Forum. 2022; 11(1):82. https://doi.org/10.3390/IECPS2021-11984
Chicago/Turabian StyleGoufo, Piebiep, and Isabel Cortez. 2022. "Galactolipids as Potential Biomarkers for Early Diagnosis of Esca Complex Disease in Asymptomatic Grapevine" Biology and Life Sciences Forum 11, no. 1: 82. https://doi.org/10.3390/IECPS2021-11984
APA StyleGoufo, P., & Cortez, I. (2022). Galactolipids as Potential Biomarkers for Early Diagnosis of Esca Complex Disease in Asymptomatic Grapevine. Biology and Life Sciences Forum, 11(1), 82. https://doi.org/10.3390/IECPS2021-11984