Determining the Response of Citrus Plants to Reduced Nitrogen Fertilization †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Total Protein Measurement
2.3. Nitrate Reductase and Nitrite Reductase Activity Assay
2.4. Statistical Analyses
3. Results
3.1. Number of Leaves, Leaf Area and Root Growth
3.2. Total Protein Content
3.3. Enzymatic Activities
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prassad, S.; Chetty, A. Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing. Food Chem. 2008, 106, 772–780. [Google Scholar] [CrossRef]
- Ananya, D.B.; Anusha, U.; Arpitha, S.; Chacko, S.R. Effects of Nitrate on Human Health—A Review. Int. J. Res. Eng. Sci. Manag. 2019, 2, 2581–5792. [Google Scholar]
- Qin, W.; Assinck, F.B.T.; Heinen, M.; Onenema, O. Water and nitrogen use effi- ciencies in citrus production: A meta-analysis. Agric. Ecosyst. Environ. 2016, 222, 103–111. [Google Scholar] [CrossRef]
- Wan, S.Z.; Gu, H.J.; Yang, Q.P.; Hu, X.F.; Fang, X.M.; Singh, A.N.; Chen, F.S. Long-term fertilization increases soil nutrient accumulations but decreases biological activity in navel orange orchards of subtropical China. J. Soil Sediments 2017, 17, 2346–2356. [Google Scholar] [CrossRef]
- Roccuzzo, G.; Scandellari, F.; Allegra, M.; Torrisi, B.; Stagno, F.; Mimmo, T.; Zanotelli, D.; Gioacchini, P.; Millard, P.; Tagliavini, M. Seasonal dynamics of root uptake and spring remobilization of nitrogen in field grown orange trees. Sci. Hortic. 2017, 226, 223–230. [Google Scholar] [CrossRef]
- Gimeno, V.; Díaz-López, L.; Simón-Grao, S.; Martínez, V.; Martínez-Nicolás, J.J.; García-Sánchez, F. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiol. Biochem. 2014, 83, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Gerding, X.; Espinoza, C.; Inostroza-Blancheteau, C.; Arce-Johnson, P. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol. Biochem. 2015, 92, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Joy, K.W.; Hageman, R.H. The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochem. J. 1966, 100, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jia, Y.; Xu, H.; Wang, Y.; Zhou, Y.; Huang, Z.; Yang, L.; Li, Y.; Chen, L.S.; Guo, J. Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Sci Hortic. 2020, 272, 109526. [Google Scholar] [CrossRef]
- Fernández-Ballester, G.; García-Sánchez, F.; Cerdá, A.; Martínez, V. Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiol. 2003, 23, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerezo, M.; Camañes, G.; Flors, V.; Primo-Millo, E.; García-Agustín, P. Regulation of nitrate transport in Citrus rootstocks depending on nitrogen availability. Plant Signal. Behav. 2007, 2, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cuenca, M.R.; Martínez-Alcántara, B.; Quiñones, A.; Ruiz, M.; JIglesias, D.; Primo-Millo, E.; Forner-Giner, M.A. Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W. PLoS ONE 2015, 10, e0134372. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Quiñones, A.; Martínez-Alcántara, B.; Aleza, P.; Morillon, R.; Navarro, L.; Primo-Millo, E.; Martínez-Cuenca, M.R. Effects of salinity on diploid (2×) and doubled diploid (4×) Citrus macrophylla genotypes. Sci. Hortic. 2016, 207, 33–40. [Google Scholar] [CrossRef]
Root Weight (mg) | Number of Leaves | Mean Leaf Area (cm2) | |
---|---|---|---|
Control | 1023 ± 45 | 15 ± 3 | 10.247 ± 0.791 |
50% nitrogen | 968 ± 65 | 14 ± 5 | 6.222 ± 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gómez, P.; Carvajal, M. Determining the Response of Citrus Plants to Reduced Nitrogen Fertilization. Biol. Life Sci. Forum 2022, 11, 81. https://doi.org/10.3390/IECPS2021-11927
García-Gómez P, Carvajal M. Determining the Response of Citrus Plants to Reduced Nitrogen Fertilization. Biology and Life Sciences Forum. 2022; 11(1):81. https://doi.org/10.3390/IECPS2021-11927
Chicago/Turabian StyleGarcía-Gómez, Pablo, and Micaela Carvajal. 2022. "Determining the Response of Citrus Plants to Reduced Nitrogen Fertilization" Biology and Life Sciences Forum 11, no. 1: 81. https://doi.org/10.3390/IECPS2021-11927
APA StyleGarcía-Gómez, P., & Carvajal, M. (2022). Determining the Response of Citrus Plants to Reduced Nitrogen Fertilization. Biology and Life Sciences Forum, 11(1), 81. https://doi.org/10.3390/IECPS2021-11927