Influence of ZnO Fertilization of Grapes cv. Syrah on Photosynthesis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Quantification of Zn in Grapes
2.3. Leaf Gas Exchange
2.4. Morphology of the Field
2.5. Statistical Analyses
3. Results
3.1. Quantification of Zn in Grapes
3.2. Leaf Gas Exchange
3.3. Morphology of the Field
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Droulia, F.; Charalampopoulos, I. Future climate change impacts on european viticulture: A review on recent scientific advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Cirqueira, M.G.; Costa, S.S.; Viana, J.D.; Silva, C.A.B.C.; Umsza-Guez, M.A.; Machado, B.A.S. Phytochemical importance and utilization potential of grape residue from wine production. Afr. J. Biotechnol. 2017, 16, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Seccia, A.; Viscecchia, R.; Nardone, G. Table grapes as functional food: Consumer preferences for health and environmental attributes. BIO Web Conf. 2019, 15, 03011. [Google Scholar] [CrossRef]
- Cakmak, I.; McLaughlin, M.J.; White, P. Zinc for better crop production and human health. Plant Soil. 2017, 411, 1–4. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Physiological limits to zinc biofortification of edible crops. Front. Plant Sci. 2011, 2, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants-An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Yamori, W. Photosynthesis and respiration. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 12, pp. 197–206. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv‘Hongyang. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Cai, Z.Q.; Liu, G.Z.; Wang, H.; Cai, C.T. Effects of fertilization on the growth, photosynthesis, and biomass accumulation in juvenile plants of three coffee (Coffea arabica L.) cultivars. Photosynthetica 2017, 55, 134–143. [Google Scholar] [CrossRef]
- Wang, M.; Shi, S.; Lin, F.; Hao, Z.; Jiang, P.; Dai, G. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLoS ONE 2012, 7, e30754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Marques, A.C.; Daccak, D.; Simões, M.; Reboredo, F.; Silva, M.M.; Pessoa, M.F.; Galhano, C.; et al. A Technological workflow for Ca enrichment in rocha pears: Implication in quality. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), Leiria, Portugal, 10–12 May 2021. [Google Scholar] [CrossRef]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwel, I.F.; Goulão, I.; et al. Long-Term elevated Air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical coffea arabica and C. canephora species. Glob. Change Biol. Bioenergy 2016, 22, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, C.C.; Lidon, C.F.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 2021, 277, 109834. [Google Scholar] [CrossRef]
- Zufferey, V.; Spring, J.-L.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Rösti, J.; Gindro, K.; Spangenberg, J.; et al. The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland. OENO One 2017, 51, 37–57. [Google Scholar] [CrossRef]
- Zlatev, Z.; Lidon, F.C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.M.; Gupta, N.; Nazir, M.; Mahajan, R.; Malik, F.A.; Sofi, N.R.; Shikari, A.B.; Salgotra, R.K. Impact of drought on photosynthesis: Molecular perspective. Plant Gene 2017, 11, 154–159. [Google Scholar] [CrossRef]
- Sabir, A.; Sari, G. Zinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.). Sci. Hortic. 2019, 244, 61–67. [Google Scholar] [CrossRef]
- Fatemi, H.; Carvajal, M.; Rios, J.J. Foliar application of Zn alleviates salt stress symptoms of Pak Choi plants by activating water relations and glucosinolate synthesis. Agron. J. 2020, 10, 1528. [Google Scholar] [CrossRef]
- Aisha, I.; Muhammad, Y.A.; Mumtaz, H.; Muhammad, A.; Rashid, A.; Ali, K. Effect of micronutrients (zn, cu and b) on photosynthetic and fruit yield attributes of citrus reticulata blanco variety kinnow. Pak. J. Bot. 2015, 47, 1241–1247. [Google Scholar]
Treatment | Photosynthetic Parameters |
---|---|
Pn (µmol CO2 m−2 s−1) | |
0 g ha−1 | 13.6 ± 0.4 a |
ZnO 450 g ha−1 | 13.7 ± 0.1 a |
gs (mmol H2O m−2 s−1) | |
0 g ha−1 | 201.3 ± 5.8 a |
ZnO 450 g ha−1 | 197.8 ± 4.4 a |
E (mmol H2O m−2 s−1) | |
0 g ha−1 | 5.4 ± 0.1 a |
ZnO 450 g ha−1 | 4.6 ± 4.4 b |
iWUE (mmol CO2 mol−1 H2O) | |
0 g ha−1 | 2.5 ± 0.1 b |
ZnO 450 g ha−1 | 3.0 ± 4.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Marques, A.C.; Coelho, A.R.F.; Pessoa, C.C.; Luís, I.C.; Ramalho, J.C.; Silva, M.J.; Rodrigues, A.P.; Campos, P.S.; Pais, I.P.; et al. Influence of ZnO Fertilization of Grapes cv. Syrah on Photosynthesis. Biol. Life Sci. Forum 2022, 11, 71. https://doi.org/10.3390/IECPS2021-11936
Daccak D, Marques AC, Coelho ARF, Pessoa CC, Luís IC, Ramalho JC, Silva MJ, Rodrigues AP, Campos PS, Pais IP, et al. Influence of ZnO Fertilization of Grapes cv. Syrah on Photosynthesis. Biology and Life Sciences Forum. 2022; 11(1):71. https://doi.org/10.3390/IECPS2021-11936
Chicago/Turabian StyleDaccak, Diana, Ana Coelho Marques, Ana Rita F. Coelho, Cláudia Campos Pessoa, Inês Carmo Luís, José C. Ramalho, Maria José Silva, Ana Paula Rodrigues, Paula Scotti Campos, Isabel P. Pais, and et al. 2022. "Influence of ZnO Fertilization of Grapes cv. Syrah on Photosynthesis" Biology and Life Sciences Forum 11, no. 1: 71. https://doi.org/10.3390/IECPS2021-11936
APA StyleDaccak, D., Marques, A. C., Coelho, A. R. F., Pessoa, C. C., Luís, I. C., Ramalho, J. C., Silva, M. J., Rodrigues, A. P., Campos, P. S., Pais, I. P., Semedo, J. N., Simões, M., Silva, M. M., Kullberg, J. C., Brito, M. G., Legoinha, P., Reboredo, F. H., Pessoa, M. F., & Lidon, F. C. (2022). Influence of ZnO Fertilization of Grapes cv. Syrah on Photosynthesis. Biology and Life Sciences Forum, 11(1), 71. https://doi.org/10.3390/IECPS2021-11936