How to Improve Already Improved Cowpea—Terminal Drought †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Capacity and Water Stress Induction
2.2. SPAD Measurements
2.3. Gas Exchange Measurements
2.4. Yield
2.5. Statistical Analysis
3. Results
3.1. SPAD
3.2. Gas Exchanges
3.3. Yield
3.4. Genetic Diversity Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oritz, R. Cowpeas from Nigeria: A silent food revolution. Outlook Agric. 1998, 27, 125–128. [Google Scholar] [CrossRef]
- Tariku, S. Breeding Cowpea Vigna unguiculata L. Walp for Quality Traits. Ann. Rev. Resear. 2018, 3, 45–50. [Google Scholar]
- Horn, L.N.; Shimelis, H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in sub-Saharan Africa. Ann. Agric. Sci. 2020, 65, 83–91. [Google Scholar] [CrossRef]
- Tosti, N.; Negri, V. On-going on-farm microevolutionary processes in neighbouring cowpea landraces revealed by molecular markers. Theor. Appl. Genet. 2005, 110, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Patto, M.C. Cereal landraces: An essential resource for the future of contemporary agriculture, A review. Agron. Sustain. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulos, P.J.; Bebeli, P.J. Phenotypic Diversity in Greek Tomato (Solanum lycopersicum L.) Landraces. Sci. Hortic. 2010, 126, 138–144. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Montville, M.E.; Pinto, J.R. Using container weights to determine irrigation needs: A simple method. Nativ. Plants 2015, 16, 67–71. [Google Scholar] [CrossRef]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Silva, M.J.; Martins, S.; Semedo, M.C.; et al. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Tree Physiol. 2021, 41, 708–727. [Google Scholar] [CrossRef]
- Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinform 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Delmer, D.P. Agriculture in the developing world: Connecting innovations in plant research to downstream applications. Proc. Natl. Acad. Sci. USA 2005, 102, 15739–15746. [Google Scholar] [CrossRef] [Green Version]
- Pushpavalli, R.; Zaman-Allah, M.; Turner, N.C.; Baddam, R.; Rao, M.V.; Vadez, V. Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Funct. Plant Biol. 2014, 42, 162–174. [Google Scholar] [CrossRef]
- Campos, P.S.; Ramalho, J.; Silva, M.J.; Lauriano, J.A.; Matos, M.C. Effects of drought on photosynthetic performance and water relations of four Vigna genotypes. Photosynthetica 1999, 36, 79–87. [Google Scholar] [CrossRef]
- Scotti-Campos, P.; Pham-Thi, A.T.; Semedo, J.N.; Pais, I.P.; Ramalho, J.C.; Matos, M.C. Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emir. J. Food Agric. 2013, 25, 1002–1013. [Google Scholar] [CrossRef] [Green Version]
- Lopez, F.B.; Chauhan, Y.S.; Johansen, C. Effects of timing of drought stress on leaf area development and canopy light interception of short-duration pigeonpea. J. Agron. Crop Sci. 1997, 178, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S. Drought stress in grain legumes during reproduction and grain filling. J. Agron. Crop Sci. 2016, 203, 81–102. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Fakir, S.A.; Juraimi, A.S.; Hakim, M.A.; Islam, M.M.; Shamsuddoha, A.T.M. Effects of flowering behavior and pod maturity synchrony on yield of mungbean [Vigna radiata (L.)Wilczek]. Aust. J. Crop Sci. 2011, 5, 945–953. [Google Scholar]
- Ulemale, C.S.; Mate, S.N.; Deshmukh, D.V. Physiological Indices for Drought Tolerance in Chickpea (Cicer arietinum L.). World J. Agric. Sci. 2013, 9, 123–131. [Google Scholar]
- Asare, A.T.; Gowda, B.S.; Galyuon, I.K.A.; Aboagye, L.M.; Takrama, J.F.; Timko, M.P. Assessment of the genetic diversity in cowpea (Vigna unguiculata) germplasm from Ghana using simple sequence repeat markers. Plant Genet. Resour. 2010, 8, 142–150. [Google Scholar] [CrossRef]
- Perrino, P.; Laghetti, G.; Spagnoleti Zeuli, P.L.; Monti, L.M. Diversification of cowpea in the Mediterranean and other centers of cultivation. Genet. Resour. Crop Evol. 1993, 40, 121–132. [Google Scholar] [CrossRef]
- Lazaridi, E.; Ntatsi, G.; Savvas, D.; Bebeli, P.J. Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genet. Resour. Crop Evol. 2016, 64, 1529–1551. [Google Scholar] [CrossRef]
- Stoilova, T.; Pereira, G. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. Afr. J. Biotechnol. 2013, 8, 208–215. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, R.; Nunes, C.; Pais, I.; Semedo, J.; Guimarães, J.B.; Simões, F.; Veloso, M.M.; Scotti-Campos, P. How to Improve Already Improved Cowpea—Terminal Drought. Biol. Life Sci. Forum 2022, 11, 45. https://doi.org/10.3390/IECPS2021-11967
Moreira R, Nunes C, Pais I, Semedo J, Guimarães JB, Simões F, Veloso MM, Scotti-Campos P. How to Improve Already Improved Cowpea—Terminal Drought. Biology and Life Sciences Forum. 2022; 11(1):45. https://doi.org/10.3390/IECPS2021-11967
Chicago/Turabian StyleMoreira, Rita, Cátia Nunes, Isabel Pais, José Semedo, Joana Bagoin Guimarães, Fernanda Simões, Maria Manuela Veloso, and Paula Scotti-Campos. 2022. "How to Improve Already Improved Cowpea—Terminal Drought" Biology and Life Sciences Forum 11, no. 1: 45. https://doi.org/10.3390/IECPS2021-11967
APA StyleMoreira, R., Nunes, C., Pais, I., Semedo, J., Guimarães, J. B., Simões, F., Veloso, M. M., & Scotti-Campos, P. (2022). How to Improve Already Improved Cowpea—Terminal Drought. Biology and Life Sciences Forum, 11(1), 45. https://doi.org/10.3390/IECPS2021-11967