Analysis of Plant-Insect Pollination Network—A Case Study on the Exotic Plants as Nectar Resource of Butterflies across Darjeeling District of West Bengal, India †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Design
2.2. Data Analysis
- (i)
- Generality: It represents the mean number of prey species per predator. In the case of weighted links, Hj, the Shannon diversity of interactions for predator species j has been calculated as follows [26]:Hj = −Σ[(aij/Aj) × ln(aij/Aj)]
- (ii)
- Vulnerability: It represents the mean number of predator species per prey. In the case of weighted links, Hi, the Shannon diversity of interactions for prey species i is calculated as follows [26]:Hi = −Σ[(aji/Ai) × ln(aji/Ai)]
- (iii)
- Weighted Linkage density: Since the generality and vulnerability are known. The weighted linkage density (Lq) is obtained as their arithmetic mean. In this case, Lq is calculated as follows [27]:Lq = 0.5(Hj + Hi)
- (iv)
- Interaction Evenness: Shannon’s evenness of network interactions has been calculated as follows [28]:
- (i)
- Links per species: The mean number of links per species has been calculated as follows [28]:Lx (mean) = l/(I + J)
- (ii)
- Connectance: Is represented by the realised proportion of possible links. Connectance (C) has been expressed as [29]:C = L/(IJ)
- (iii)
- Web asymmetry: It denotes a balance between the number of species in two trophic levels. Web asymmetry has been calculated as follows [30]:W = (I − J)/(I + J)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dicks, L.V.; Corbet, S.A.; Pywell, R.F. Compartmentalization in plant-insect-flower visitor webs. J. Anim. Ecol. 2002, 71, 32–43. [Google Scholar] [CrossRef]
- Eichhorn, M.P. Natural Systems: The Organisation of Life; John Wiley, Blackwell & Sons: Hoboken, NJ, USA, 2016; p. 368. [Google Scholar]
- Bascompte, J.; Jordano, P.; Melian, C.J.; Olesen, J.M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA 2003, 100, 9383–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdovinos, F.S. Mutualistic networks: Moving closer to a predictive theory. Ecol. Lett. 2019, 22, 1517–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [Green Version]
- Bascompte, J.; Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, A.; Klein, A.-M.; Tscharntke, T. Plant-flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic Appl. Ecol. 2011, 12, 300–309. [Google Scholar] [CrossRef]
- Allesina, S.; Tang, S. Stability criteria for complex ecosystems. Nature 2012, 483, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Nuismer, S.L.; Jordano, P.; Bascompte, J. Coevolution and the architecture of mutualistic networks. Evolution 2013, 67, 338–354. [Google Scholar] [CrossRef] [Green Version]
- Suweis, S.; Simini, F.; Banavar, J.; Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 2013, 500, 449–452. [Google Scholar] [CrossRef] [Green Version]
- James, A.; Plank, M.; Rossberg, A.; Beecham, J.; Emmerson, M.; Pitchford, J. Constructing random matrices to represent real ecosystems. Am. Nat. 2015, 185, 680–692. [Google Scholar] [CrossRef]
- Ballantyne, G.; Baldock, K.C.R.; Willmer, P.G. Constructing more informative plant-pollinator networks: Visitation and pollen deposition networks in a heathland plant community. Proc. R. Soc. Lond. 2015, 282, 20151130. [Google Scholar] [CrossRef] [Green Version]
- Staab, M.; Blüthgen, N.; Klein, A.M. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos 2015, 124, 827–834. [Google Scholar] [CrossRef]
- Pereira-Peixoto, M.H.; Pufal, G.; Staab, M.; Martins, C.; Klein, A.M. Diversity and specificity of host-natural enemy interactions in an urban-rural interface. Ecol. Entomol. 2016, 41, 241–252. [Google Scholar] [CrossRef]
- Jordano, P.; Bascompte, J.; Olesen, J.M. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 2003, 6, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Staab, M.; Pereira-Peixoto, M.H.; Klein, A.-M. Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia 2020, 194, 465–480. [Google Scholar] [CrossRef]
- Memmott, J.; Waser, N.M. Integration of alien plants into a native flower pollinator visitation web. Proc. R. Soc. Lond. 2002, 269, 2395–2399. [Google Scholar] [CrossRef]
- Bartomeus, I.; Vilà, M.; Santamaría, L. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 2008, 155, 761–770. [Google Scholar] [CrossRef]
- Valdovinos, F.S.; Ramos-Jiliberto, R.; Flores, J.D.; Espinoza, C.; Lopez, G. Structure and dynamics of pollination networks: The role of alien plants. Oikos 2009, 118, 1190–1200. [Google Scholar] [CrossRef]
- Lowenstein, D.M.; Matteson, K.C.; Minor, E.S. Evaluating the dependence of urban pollinators on ornamental, non-native, and weedy floral resources. Urban Ecosyst. 2019, 22, 293–302. [Google Scholar] [CrossRef]
- Cowan, A.; Cowan, J.M. The Trees of Northern Bengal Including Shrubs, Woody Climbers, Bamboos, Palms and Tree Ferns; Naaz Offset Press: Delhi, India, 1979; p. 178. [Google Scholar]
- Polunin, O.; Stainton, A. Flowers of the Himalaya; Seventh Impression; Oxford University Press: New Delhi, India, 2005; p. xxx+580. [Google Scholar]
- Maity, D.; Maiti, G.G. The Wild Flowers of Kanchenjunga Biosphere Reserve, Sikkim; Naya Udyog: Kolkata, India, 2007; p. 174. [Google Scholar]
- Kehimkar, I. The Book of Indian Butterflies Bombay Natural History Society; Oxford University Press: New Delhi, India, 2008; p. xvi+497. [Google Scholar]
- Haribal, M. The Butterflies of Sikkim Himalaya and Their Natural History; Sikkim Natural Conservation Foundation: Gangtok, India, 1992; p. 217. [Google Scholar]
- Bersier, L.F.; Banasek-Richter, C.; Cattin, M.F. Quantitative descriptors of food-web matrices. Ecology 2002, 83, 2394–2407. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Tscharntke, T.; Lewis, O.T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 2007, 445, 202–205. [Google Scholar] [CrossRef]
- Dormann, C.F.; Fründ, J.; Blüthgen, N.; Gruber, B. Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Graves, G.R. Null Models in Ecology; Smithsonian Institution Press: Washington, DC, USA, 1996. [Google Scholar]
- Blüthgen, N.; Menzel, F.; Hovestadt, T.; Fiala, B.; Blüthgen, N. Specialization, constraints and conflicting interests in mutualistic networks. Curr. Biol. 2007, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 2006, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.A.; Williams, R.J.; Martinez, N.D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. USA 2002, 99, 12917–12922. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.M.; Jordano, P. Geographic patterns in plant-pollinator mutualistic networks. Ecology 2002, 83, 2416–2424. [Google Scholar]
- Vázquez, D.P.; Aizen, M.A. Asymmetric specialization: A pervasive feature of plant-pollinator interactions. Ecology 2004, 85, 1251–1257. [Google Scholar] [CrossRef]
- Lewinsohn, T.M.; Prado, P.I.; Jordano, P.; Bascompte, J.; Olesen, J.M. Structure in plant-animal interaction assemblages. Oikos 2006, 113, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Rezende, E.L.; Lavebre, J.E.; Guimarães, P.R.; Jordano, P.; Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 2007, 448, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Mouillot, D.; Krasnov, B.R.; Shenbrot, G.I.; Poulin, R. Connectance and parasite diet breadth in flea-mammal webs. Oikos 2008, 31, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Whittall, J.B.; Hodges, S.A. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 2007, 447, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.N.; Laine, A.L.; Thompson, J.F. Retention of mutualism in a geographically diverging interaction. Ecol. Lett. 2010, 13, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Johnson, S.D.; Cranmer, L.; Kellie, S. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 2003, 92, 807–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J.M.; Bascompte, J.; Elberling, H.; Jordano, P. Temporal dynamics in a pollination network. Ecology 2008, 89, 1573–1582. [Google Scholar] [CrossRef]
- Graves, S.D.; Shapiro, A.M. Exotics as host plants of the California butterfly fauna. Biol. Conserv. 2003, 110, 413–433. [Google Scholar] [CrossRef]
- Martins, K.T.; Gonzalez, A.; Lechowicz, M.J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 2017, 20, 1359–1371. [Google Scholar] [CrossRef]
- Buchholz, S.; Kowarik, I. Urbanisation modulates plant-pollinator interactions in invasive vs. native plant species. Sci. Rep. 2019, 9, 6375. [Google Scholar] [CrossRef]
Network Indices Based on Unweighted Links (Qualitative Webs) | ||
Sr. no. | Network indices | |
1 | Links per species | 1.042 |
2 | Connectance | 0.061 (6.10%) |
3 | Web asymmetry | −0.222 |
Network Indices Based on Weighted Links (Quantitative Webs) | ||
Sr. no. | Network indices | |
1 | Generality | 3.608 |
2 | Vulnerability | 3.166 |
3 | Weighted linkage density | 3.387 |
4 | Interaction evenness | 0.441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, P.; Ghorai, N. Analysis of Plant-Insect Pollination Network—A Case Study on the Exotic Plants as Nectar Resource of Butterflies across Darjeeling District of West Bengal, India. Biol. Life Sci. Forum 2022, 11, 22. https://doi.org/10.3390/IECPS2021-11970
Sengupta P, Ghorai N. Analysis of Plant-Insect Pollination Network—A Case Study on the Exotic Plants as Nectar Resource of Butterflies across Darjeeling District of West Bengal, India. Biology and Life Sciences Forum. 2022; 11(1):22. https://doi.org/10.3390/IECPS2021-11970
Chicago/Turabian StyleSengupta, Panchali, and Narayan Ghorai. 2022. "Analysis of Plant-Insect Pollination Network—A Case Study on the Exotic Plants as Nectar Resource of Butterflies across Darjeeling District of West Bengal, India" Biology and Life Sciences Forum 11, no. 1: 22. https://doi.org/10.3390/IECPS2021-11970
APA StyleSengupta, P., & Ghorai, N. (2022). Analysis of Plant-Insect Pollination Network—A Case Study on the Exotic Plants as Nectar Resource of Butterflies across Darjeeling District of West Bengal, India. Biology and Life Sciences Forum, 11(1), 22. https://doi.org/10.3390/IECPS2021-11970