Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Reagents and Extraction Protocols
2.3. HPLC Analysis of Ascorbic Acid
2.4. Data Analysis
3. Results and Discussion
3.1. Physical Characteristics
3.2. Ascorbic Acid Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, E.M.; Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 2020, 30, e02149. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A.; Challis, A.; Marchin, R.M.; Tjoelker, M.G. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 2020, 54, 126771. [Google Scholar] [CrossRef]
- Melzer, R.; Plumb, J. Plants of Capricornia; Capricorn Conservation Council: Rockhampton, Australia, 2007. [Google Scholar]
- Pham, N.M.Q.; Chalmers, A.C.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Characterising the Physical, Phytochemical and Antioxidant Properties of the Tuckeroo (Cupaniopsis anacardioides) Fruit. Technologies 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.Q.; Vuong, Q.V.; Le, A.V.; Bowyer, M.C.; Scarlett, C.J. Investigation of the Most Suitable Conditions for Dehydration of Tuckeroo (Cupaniopsis anacardioides) Fruits. Processes 2020, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Optimization of ultrasound-assisted extraction conditions for phenolic compounds and antioxidant capacity from Tuckeroo (Cupaniopsis anacardioides) fruit. Sep. Sci. Technol. 2020, 55, 3151–3160. [Google Scholar] [CrossRef]
- Hawkeswood, T. Notes on the pollination and fruit production of Cupaniopsis anacardioides (A. Rich.) Radlkf.(Sapindaceae) at Townsville, north Queensland. II. Fruit and seed production. Vic. Nat. 1983, 100, 121–124. [Google Scholar]
- Richmond, R.; Bowyer, M.; Vuong, Q. Australian native fruits: Potential uses as functional food ingredients. J. Funct. Foods 2019, 62, 103547. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian fruits—A novel source of antioxidants for food. Innov. Food Sci. Emerg. Technol. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2020, 268, 113580. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Budd, C.; Mani, J.S.; Brown, P.; Walsh, K.B.; Naiker, M. Carotenoids, ascorbic acid and total phenolic content in the root tissue from five Australian-grown sweet potato cultivars. N. Z. J. Crop. Hortic. Sci. 2021. [Google Scholar] [CrossRef]
- Lado, J.; Alós, E.; Rodrigo, M.J.; Zacarías, L. Light avoidance reduces ascorbic acid accumulation in the peel of Citrus fruit. Plant Sci. 2015, 231, 138–147. [Google Scholar] [CrossRef] [PubMed]
Location | Proportion of Mass (% FW) | Ascorbic Acid Content (mg/100 g DW) | ||||
---|---|---|---|---|---|---|
Skin (%) | Seeds (%) | Arils (%) | Skin (%) | Seeds (%) | Arils (%) | |
N bottom | 70.6 ± 3.8 | 19.8 ± 4.8 | 9.6 ± 2.8 | 426 ± 77 | 15.7 ± 2.9 | 67.8 ± 16.8 |
N top | 70.9 ± 4.2 | 20.1 ± 5.5 | 9.1 ± 2.5 | 410 ± 66 | 18.2 ± 4.2 | 64.9 ± 16.7 |
S bottom | 71.8 ± 3.9 | 19.0 ± 4.3 | 9.1 ± 2.2 | 418 ± 55 | 15.0 ± 5.1 | 49.7 ± 14.7 |
S top | 71.5 ± 2.7 | 17.4 ± 5.9 | 11.1 ± 5.1 | 440 ± 52 | 13.6 ± 4.2 | 57.7 ± 23.9 |
Means | 71.2 ± 3.3 | 19.1 ± 4.8 | 9.7 ± 3.1 | 423 ± 61 | 15.6 ± 4.3 | 60.0 ± 18.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.B.; Mani, J.S.; Naiker, M. Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits. Biol. Life Sci. Forum 2022, 11, 15. https://doi.org/10.3390/IECPS2021-11979
Johnson JB, Mani JS, Naiker M. Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits. Biology and Life Sciences Forum. 2022; 11(1):15. https://doi.org/10.3390/IECPS2021-11979
Chicago/Turabian StyleJohnson, Joel B., Janice S. Mani, and Mani Naiker. 2022. "Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits" Biology and Life Sciences Forum 11, no. 1: 15. https://doi.org/10.3390/IECPS2021-11979
APA StyleJohnson, J. B., Mani, J. S., & Naiker, M. (2022). Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits. Biology and Life Sciences Forum, 11(1), 15. https://doi.org/10.3390/IECPS2021-11979