The Impact of Seasonal Variation on Salivary Hormone Responses During Simulated Mountain Warfare
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Participants
4.3. Salivary Hormone Profiles
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Marine Corps. Mountain Warfare Operations, MCTP 12-10A (Formerly MCWP 3-35.1); US Marine Corps: Washington, DC, USA, 2016. [Google Scholar]
- US Forest Service; US Marine Corps. Enhancement of Operations and Training Proficiency at MCMWTC Bridgeport; US Forest Service: Washington, DC, USA, 2017.
- Osório, C.; Probert, T.; Jones, E.; Young, A.H.; Robbins, I. Adapting to stress: Understanding the neurobiology of resilience. Behav. Med. 2017, 43, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Beckner, M.E.; Main, L.; Tait, J.L.; Martin, B.J.; Conkright, W.R.; Nindl, B.C. Circulating biomarkers associated with performance and resilience during military operational stress. Eur. J. Sport Sci. 2022, 22, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.A., III; Rasmusson, A.; Pietrzak, R.H.; Coric, V.; Southwick, S.M. Relationships among plasma dehydroepiandrosterone and dehydroepiandrosterone sulfate, cortisol, symptoms of dissociation, and objective performance in humans exposed to underwater navigation stress. Biol. Psychiatry 2009, 66, 334–340. [Google Scholar] [CrossRef]
- Kyröläinen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mäntysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur. J. Appl. Physiol. 2008, 102, 539–546. [Google Scholar] [CrossRef]
- Taylor, M.K.; Padilla, G.A.; Stanfill, K.E.; Markham, A.E.; Khosravi, J.Y.; Dial Ward, M.D.; Koehler, M.M. Effects of dehydroepiandrosterone supplementation during stressful military training: A randomized, controlled, double-blind field study. Stress 2012, 15, 85–96. [Google Scholar] [CrossRef]
- Morgan, C.A., III; Rasmusson, A.M.; Wang, S.; Hoyt, G.; Hauger, R.L.; Hazlett, G. Neuropeptide-Y, cortisol, and subjective distress in humans exposed to acute stress: Replication and extension of previous report. Biol. Psychiatry 2002, 52, 136–142. [Google Scholar] [CrossRef]
- Taylor, M.K.; Sausen, K.P.; Potterat, E.G.; Mujica-Parodi, L.R.; Reis, J.P.; Markham, A.E.; Padilla, G.A.; Taylor, D.L. Stressful military training: Endocrine reactivity, performance, and psychological impact. Aviat. Space Environ. Med. 2007, 78, 1143–1149. [Google Scholar] [CrossRef]
- Li, X.; Wilder-Smith, C.H.; Kan, M.E.; Lu, J.; Cao, Y.; Wong, R.K. Combat-training stress in soldiers increases S100B, a marker of increased blood-brain-barrier permeability, and induces immune activation. Neuroendocrinol. Lett. 2014, 35, 58–63. [Google Scholar] [PubMed]
- Morgan, C.A., III; Wang, S.; Rasmusson, A.; Hazlett, G.; Anderson, G.; Charney, D.S. Relationship among plasma cortisol, catecholamines, neuropeptide Y, and human performance during exposure to uncontrollable stress. Psychosom. Med. 2001, 63, 412–422. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Farina, E.K.; Caldwell, J.; Williams, K.W.; Thompson, L.A.; Niro, P.J.; Grohmann, K.A.; McClung, J.P. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training. Physiol. Behav. 2016, 165, 86–97. [Google Scholar] [CrossRef]
- Szivak, T.K.; Lee, E.C.; Saenz, C.; Flanagan, S.D.; Focht, B.C.; Volek, J.S.; Maresh, C.M.; Kraemer, W.J. Adrenal stress and physical performance during military survival training. Aerosp. Med. Hum. Perform. 2018, 89, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.A., III; Southwick, S.; Hazlett, G.; Rasmusson, A.; Hoyt, G.; Zimolo, Z.; Charney, D. Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry 2004, 61, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Ledford, A.K.; Dixon, D.; Luning, C.R.; Martin, B.J.; Miles, P.C.; Beckner, M.; Bennett, D.; Conley, J.; Nindl, B.C. Psychological and physiological predictors of resilience in Navy SEAL training. Behav. Med. 2020, 46, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.M.; Singh, P.; Khrimian, L.; Morgan, D.A.; Chowdhury, S.; Arteaga-Solis, E.; Horvath, T.L.; Domingos, A.I.; Marsland, A.L.; Kumar Yadav, V.; et al. Mediation of the acute stress response by the skeleton. Cell Metab. 2019, 30, 890–902. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Lutz, L.J.; Rood, J.C.; Cable, S.J.; Pasiakos, S.M.; Young, A.J.; McClung, J.P. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: A randomized, double-blind, placebo controlled trial. Bone 2014, 68, 46–56. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Nakayama, A.T.; Guerriere, K.I.; Lutz, L.J.; Walker, L.A.; Staab, J.S.; Scott, J.M.; Gasier, H.G.; McClung, J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone 2019, 123, 224–233. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Izard, R.M.; Tang, J.C.; Fraser, W.D.; Greeves, J.P. Sex differences in tibial adaptations to arduous training: An observational cohort study. Bone 2022, 160, 116426. [Google Scholar] [CrossRef]
- Taylor, M.K.; Hernández, L.M.; Fuller, S.A.; Sargent, P.; Padilla, G.A.; Harris, E. Cortisol awakening response in elite military men: Summary parameters, stability measurement, and effect of compliance. Mil. Med. 2016, 181, e1600–e1607. [Google Scholar] [CrossRef]
- Friedl, K.E.; Moore, R.J.; Hoyt, R.W.; Marchitelli, L.J.; Martinez-Lopez, L.E.; Askew, E.W. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J. Appl. Physiol. 2000, 88, 1820–1830. [Google Scholar] [CrossRef]
- Givens, A.C.; Bernards, J.R.; Kelly, K.R. Characterization of female US marine recruits: Workload, caloric expenditure, fitness, injury rates, and menstrual cycle disruption during bootcamp. Nutrients 2023, 15, 1639. [Google Scholar] [CrossRef]
- Margolis, L.M.; Pasiakos, S.M. Performance nutrition for cold-weather military operations. Int. J. Circumpolar Health 2023, 82, 2192392. [Google Scholar] [CrossRef] [PubMed]
- Tharion, W.J.; Lieberman, H.R.; Montain, S.J.; Young, A.J.; Baker-Fulco, C.J.; DeLany, J.P.; Hoyt, R.W. Energy requirements of military personnel. Appetite 2005, 44, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, R.W.; Jones, T.E.; Stein, T.P.; McAninch, G.W.; Lieberman, H.R.; Askew, E.W.; Cymerman, A. Doubly labeled water measurement of human energy expenditure during strenuous exercise. J. Appl. Physiol. 1991, 71, 16–22. [Google Scholar] [CrossRef]
- Margolis, L.M.; Murphy, N.E.; Martini, S.; Spitz, M.G.; Thrane, I.; McGraw, S.M.; Blatny, J.M.; Castellani, J.W.; Rood, J.C.; Young, A.J.; et al. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1395–1401. [Google Scholar] [CrossRef]
- Castellani, J.W.; Spitz, M.G.; Karis, A.J.; Martini, S.; Young, A.J.; Margolis, L.M.; Murphy, N.E.; Xu, X.; Montain, S.J.; Bohn, J.A.; et al. Cardiovascular and thermal strain during 3–4 days of a metabolically demanding cold-weather military operation. Extrem. Physiol. Med. 2017, 6, 2. [Google Scholar] [CrossRef]
- Ahmed, M.; Mandic, I.; Desilets, E.; Smith, I.; Sullivan-Kwantes, W.; Jones, P.J.; Goodman, L.; Jacobs, I.; L’Abbé, M. Energy balance of Canadian armed forces personnel during an Arctic-Like field training exercise. Nutrients 2020, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C. Insulin-like growth factor-I as a candidate metabolic biomarker: Military relevance and future directions for measurement. J. Diabetes Sci. Tech. 2009, 3, 371–376. [Google Scholar] [CrossRef]
- Karsenty, G.; Olson, E.N. Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication. Cell 2016, 164, 1248–1256. [Google Scholar] [CrossRef]
- Kelly, K.R.; Arrington, L.J.; Bernards, J.R.; Jensen, A.E. Prolonged extreme cold water diving and the acute stress response during military dive training. Front. Physiol. 2022, 13, 842612. [Google Scholar] [CrossRef]
- Jensen, A.E.; Bernards, J.R.; Hamilton, J.A.; Markwald, R.R.; Kelly, K.R.; Biggs, A.T. Don’t Shoot Me: Potential Consequences of Force-on-Force Training Modulate the Human Stress Response. J. Strength Cond. Res. 2023, 37, 1761–1769. [Google Scholar] [CrossRef]
- Beals, K.; Perlsweig, K.A.; Haubenstriker, J.E.; Lovalekar, M.; Beck, C.P.; Yount, D.L.; Darnell, M.E.; Allison, K.; Nindl, B.C. Energy deficiency during cold weather mountain training in NSW SEAL qualification students. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Filaire, E.; Massart, A.; Hua, J.; Le Scanff, C. Dietary intake, eating behaviors, and diurnal patterns of salivary cortisol and alpha-amylase secretion among professional young adult female tennis players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 233–242. [Google Scholar] [CrossRef]
- Wu, G.; Feder, A.; Cohen, H.; Kim, J.J.; Calderon, S.; Charney, D.S.; Mathé, A.A. Understanding resilience. Front. Behav. Neurosci. 2013, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Weller, R.; Eggan, S.; Roberts, N.; Zheng, W.; Heaney, J.; Dunn, T. Influence of core temperature on psychomotor performance during cold weather military training. J. Hum. Perform. Extrem. Environ. 2022, 17, 3. [Google Scholar] [CrossRef]
- Jones, D.M.; Weller, R.S.; McClintock, R.J.; Roberts, N.; Zheng, W.; Dunn, T.L. Prevalence of hypothermia and critical hand temperatures during military cold water immersion training. Int. J. Circumpolar Health 2023, 82, 2236777. [Google Scholar] [CrossRef]
- Bardwell, W.A.; Ensign, W.Y.; Mills, P.J. Negative mood endures after completion of high-altitude military training. Ann. Behav. Med. 2005, 29, 64–69. [Google Scholar] [CrossRef]
MTX Iteration | Average Temperature (°C) | Maximum Temperature (°C) | Minimum Temperature (°C) | Snow Accumulation (m) |
---|---|---|---|---|
Fall | 11 ± 2 | 20 ± 3 | 3 ± 2 | - |
Winter | −5 ± 4 | 7 ± 5 | −14 ± 5 | 20.3 |
Fall MTX (n = 66) | Winter MTX (n = 67) | |
---|---|---|
Age (years) | 21 ± 3 | 23 ± 4 |
Height (cm) | 175 ± 7 | 174 ± 7 |
Body Mass (kg) | 78.7 ± 10.6 | 79.7 ± 12.4 |
Body Mass Index (kg/m2) | 25.7 ± 2.7 | 26.2 ± 3.1 |
Fat Mass (kg) | 13.1 ± 5.1 | 14.0 ± 5.7 |
Lean Body Mass (kg) | 65.6 ± 8.2 | 65.7 ± 9.7 |
Percent Body Fat (%) | 16.3 ± 5.1 | 17.3 ± 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, J.A.; Palombo, L.J.; Givens, A.C.; Bernards, J.R.; Kloss, E.B.; Bennett, D.W.; Niederberger, B.A.; Kelly, K.R. The Impact of Seasonal Variation on Salivary Hormone Responses During Simulated Mountain Warfare. Physiologia 2024, 4, 424-432. https://doi.org/10.3390/physiologia4040028
Stein JA, Palombo LJ, Givens AC, Bernards JR, Kloss EB, Bennett DW, Niederberger BA, Kelly KR. The Impact of Seasonal Variation on Salivary Hormone Responses During Simulated Mountain Warfare. Physiologia. 2024; 4(4):424-432. https://doi.org/10.3390/physiologia4040028
Chicago/Turabian StyleStein, Jesse A., Laura J. Palombo, Andrea C. Givens, Jake R. Bernards, Emily B. Kloss, Daniel W. Bennett, Brenda A. Niederberger, and Karen R. Kelly. 2024. "The Impact of Seasonal Variation on Salivary Hormone Responses During Simulated Mountain Warfare" Physiologia 4, no. 4: 424-432. https://doi.org/10.3390/physiologia4040028
APA StyleStein, J. A., Palombo, L. J., Givens, A. C., Bernards, J. R., Kloss, E. B., Bennett, D. W., Niederberger, B. A., & Kelly, K. R. (2024). The Impact of Seasonal Variation on Salivary Hormone Responses During Simulated Mountain Warfare. Physiologia, 4(4), 424-432. https://doi.org/10.3390/physiologia4040028