Novel Assessment of Viscoelastic Skeletal Muscle Properties in Chronic Kidney Disease: Association with Physical Functioning
Abstract
:1. Introduction
2. Results
2.1. Participant Demographic and Clinical Characteristics
2.2. Aim 1: Compare the Viscoelastic Muscle Properties of CKD Patients with Previously Reported Healthy and Clinical Participants
2.3. Aim 2: Investigate the Association of Demographic and Clinical Characteristics with Viscoelastic Muscle Properties
2.4. Aim 3: Explore the Association of Passive Skeletal Muscle Viscoelastic Properties with Physical Functioning and Postural Stability
2.5. Aim 4: Determine the Association of Asymmetry % in Skeletal Muscle Viscoelastic Properties between Dominant and Non-Dominant Sides with Physical Functioning and Postural Stability
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Demographic and Health Variables
4.3. Muscle Myotonometry
- -
- oscillation frequency (in hertz, Hz), which is the intrinsic tension (or tone) of the muscle in its passive state
- -
- dynamic stiffness (in newtons per metre), the resistance to deformation
- -
- logarithmic decrement, the elasticity of the muscle [36]
4.4. Physical Performance and Muscle Function
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’Sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis chronic kidney disease: A systematic review. Ther. Adv. Chronic Dis. 2018, 9, 209–226. [Google Scholar] [PubMed]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar]
- Wilkinson, T.J.; Gould, D.W.; Nixon, D.G.D.; Watson, E.L.; Smith, A.C. Quality over quantity? Association of skeletal muscle myosteatosis and myofibrosis on physical function in chronic kidney disease. Nephrol. Dial. Transplant. 2019, 34, 1344–1353. [Google Scholar] [PubMed]
- Wilkinson, T.J.; Nixon, D.G.D.; Richler-Potts, D.; Neale, J.; Song, Y.; Smith, A.C. Identification of the most clinically useful skeletal muscle mass indices pertinent to sarcopenia and physical performance in chronic kidney disease. Nephrology 2020, 25, 467–474. [Google Scholar]
- Watson, E.L.; Baker, L.A.; Wilkinson, T.J.; Gould, D.W.; Major, R.W.; Ashford, R.U.; Philp, A.; Smith, A.C.; Graham-Brown, M.P. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease. FASEB J. 2020, 34, 1755–1767. [Google Scholar] [PubMed]
- Schneck, D.J.; Bronzino, J.D. Biomechanics: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Aird, L.; Samuel, D.; Stokes, M. Quadriceps muscle tone, elasticity and stiffness in older males: Reliability and symmetry using the MyotonPRO. Arch. Gerontol. Geriatr. 2012, 55, e31–e39. [Google Scholar]
- Lo, W.L.A.; Zhao, J.L.; Li, L.; Mao, Y.R.; Huang, D.F. Relative and absolute interrater reliabilities of a hand-held myotonometer to quantify mechanical muscle properties in patients with acute stroke in an inpatient ward. BioMed Res. Int. 2017, 2017, 4294028. [Google Scholar]
- Viir, R.; Laiho, K.; Kramarenko, J.; Mikkelsson, M. Repeatability of trapezius muscle tone assessment by a myometric method. J. Mech. Med. Biol. 2006, 6, 215–228. [Google Scholar]
- Mustalampi, S.; Häkkinen, A.; Kautiainen, H.; Weir, A.; Ylinen, J. Responsiveness of muscle tone characteristics to progressive force production. J. Strength Cond. Res. 2013, 27, 159–165. [Google Scholar]
- Gapeyeva, H.; Vain, A. Methodical Guide: Principles of Applying Myoton in Physical Medicine and Rehabilitation; Müomeetria Ltd.: Tartu, Estonia, 2008. [Google Scholar]
- Masi, A.T.; Hannon, J.C. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 2008, 12, 320–332. [Google Scholar]
- Simons, D.; Mense, S. Understanding and measurement of muscle tone as related to clinical muscle pain. Pain 1998, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fleuren, J.F.M.; Voerman, G.E.; Erren-Wolters, C.V.; Snoek, G.J.; Rietman, J.S.; Hermens, H.J.; Nene, A.V. Stop using the Ashworth Scale for the assessment of spasticity. J. Neurol. Neurosurg. Psychiatry 2010, 81, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-Y.; Choi, H.-J.; Ryu, J.; Kim, G. Between-day reliability of MyotonPRO for the non-invasive measurement of muscle material properties in the lower extremities of patients with a chronic spinal cord injury. J. Biomech. 2018, 73, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.-L.; Wu, C.-Y.; Lin, K.-C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [PubMed]
- Kanafa, M.; Kusztal, M.; Pawlaczyk, W.; Rogowski, L.; Golebiowski, T.; Letachowicz, K.; Dziubek-Rogowska, W.; Krajewska, M. SP423 Measurement of Hemodialysis Effects on Muscle Tone and Mechanical Properties of Rectus Femoris Using a Novel Myometric Device. Nephrol. Dial. Transplant. 2019, 34 (Suppl. 1), gfz103. [Google Scholar] [CrossRef]
- Chang, T.-T.; Zhu, Y.-C.; Li, Z.; Li, F.; Li, Y.-P.; Guo, J.-Y.; Wang, X.-Q.; Zhang, Z.-J. Modulation in the Stiffness of Specific Muscles of the Quadriceps in Patients with Knee Osteoarthritis and Their Relationship with Functional Ability. Front. Bioeng. Biotechnol. 2021, 9, 781672. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar]
- Mullix, J.; Warner, M.; Stokes, M. Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: Relative ratios and reliability. Work. Pap. Health Sci. 2012, 1, 1–8. [Google Scholar]
- Chen, G.; Wu, J.; Chen, G.; Lu, Y.; Ren, W.; Xu, W.; Xu, X.; Wu, Z.; Guan, Y.; Zheng, Y.; et al. Reliability of a portable device for quantifying tone and stiffness of quadriceps femoris and patellar tendon at different knee flexion angles. PLoS ONE 2019, 14, e0220521. [Google Scholar] [CrossRef]
- Kocaer, A. Proximal muscle strength as a predictor of vitamin D insufficiency in elderly. Turk. J. Phys. Med. Rehabil. 2021, 67, 84. [Google Scholar] [CrossRef]
- Van Deun, B.; Hobbelen, J.S.M.; Cagnie, B.; Van Eetvelde, B.; Van Den Noortgate, N.; Cambier, D. Reproducible measurements of muscle characteristics using the MyotonPRO device: Comparison between individuals with and without paratonia. J. Geriatr. Phys. Ther. 2018, 41, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Radžiūnas, K.; Radžiūnienė, M.; Vainoras, A.; Poderys, J. Associations between muscle myotonometry (a) symmetry and functional movement performance in young women and men. J. Meas. Eng. 2018, 6, 53–63. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Aird, L.; Bailey, L.; Mooney, K.; Mullix, J.; Warner, M.; Samuel, D.; Stokes, M. Interrater reliability of muscle tone, stiffness and elasticity measurements of rectus femoris and biceps brachii in healthy young and older males. Work. Pap. Health Sci. 2013, 1, 1–11. [Google Scholar]
- Alnaqeeb, M.; Al Zaid, N.S.; Goldspink, G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J. Anat. 1984, 139 Pt 4, 677. [Google Scholar] [PubMed]
- Singh, D.K.; Bailey, M.; Lee, R.Y. Ageing modifies the fibre angle and biomechanical function of the lumbar extensor muscles. Clin. Biomech. 2011, 26, 543–547. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. A review of research on the mechanical stiffness in running and jumping: Methodology and implications. Scand. J. Med. Sci. Sports 2008, 18, 417–426. [Google Scholar] [CrossRef]
- Kalkhoven, J.T.; Watsford, M.L. The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. J. Sports Sci. 2018, 36, 1022–1029. [Google Scholar] [CrossRef]
- Nakamura, M.; Kiyono, R.; Sato, S.; Yahata, K.; Fukaya, T.; Nishishita, S.; Konrad, A. The Associations between Rapid Strength Development and Muscle Stiffness in Older Population. Healthcare 2021, 9, 80. [Google Scholar] [CrossRef]
- Fröhlich-Zwahlen, A.; Casartelli, N.; Item-Glatthorn, J.; Maffiuletti, N. Validity of resting myotonometric assessment of lower extremity muscles in chronic stroke patients with limited hypertonia: A preliminary study. J. Electromyogr. Kinesiol. 2014, 24, 762–769. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Ortiz-Lucas, M.; Bravo-Esteban, E.; Moral, O.M.-D.; Herrero-Gallego, P.; Gómez-Soriano, J. Myotonometry as a measure to detect myofascial trigger points: An inter-rater reliability study. Physiol. Meas. 2018, 39, 115004. [Google Scholar] [CrossRef]
- Colomar, J.; Corbi, F.; Baiget, E. Alterations in mechanical muscle characteristics and postural control induced by tennis match-play in young players. PeerJ 2021, 9, e11445. [Google Scholar] [CrossRef]
- Lukas, K.; Gutschmidt, K.; Schoser, B.; Wenninger, S. Evaluation of myotonometry for myotonia, muscle stiffness and elasticity in neuromuscular disorders. J. Neurol. 2023. [Google Scholar] [CrossRef]
- Yang, D.J.; Park, S.K.; Uhm, Y.H.; Park, S.H.; Chun, D.W.; Kim, J.H. The correlation between muscle activity of the quadriceps and balance and gait in stroke patients. J. Phys. Ther. Sci. 2016, 28, 2289–2292. [Google Scholar] [CrossRef]
- Gavronski, G.; Veraksitš, A.; Vasar, E.; Maaroos, J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol. Meas. 2007, 28, 625. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- MacRae, J.M.; Harasemiw, O.; Lightfoot, C.J.; Thompson, S.; Wytsma-Fisher, K.; Koufaki, P.; Bohm, C.; Wilkinson, T.J. Measurement properties of performance-based measures to assess physical function in chronic kidney disease: Recommendations from a COSMIN systematic review. Clin. Kidney J. 2023, sfad170. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Xenophontos, S.; Gould, D.W.; Vogt, B.P.; Viana, J.L.; Smith, A.C.; Watson, E.L. Test—Retest reliability, validation, and “minimal detectable change” scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. Physiother. Theory Pract. 2019, 35, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Nixon, D.G.; Smith, A.C. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int. Urol. Nephrol. 2019, 51, 1407–1414. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Gore, E.F.; Vadaszy, N.; Nixon, D.G.; Watson, E.L.; Smith, A.C. Utility of Ultrasound as a Valid and Accurate Diagnostic Tool for Sarcopenia: Sex-Specific Cutoff Values in Chronic Kidney Disease. J. Ultrasound Med. 2021, 40, 457–467. [Google Scholar] [CrossRef]
N = 39 | |
---|---|
Age (years) | 64.2 (SD: 10.4) |
Sex (male, n (%)) | 20 (51%) |
Ethnicity (n, %) | |
White | 35 (88%) |
Asian | 1 (3%) |
Other | 1 (3%) |
Diabetes (n, %) | 8 (21%) |
eGFR (mL/min/1.73 m2) | 40.9 (SD: 20.0) |
Haemoglobin (g/L) | 128.9 (SD: 18.0) |
Albumin (g/L) | 43.1 (SD: 2.6) |
Body mass index (kg/m2) | 29.3 (SD: 4.9) |
Study | Condition | Characteristics of Participants Included | Muscle Tone, Hz | Muscle Stiffness, Nm | Muscle Elasticity, log * | |||
---|---|---|---|---|---|---|---|---|
Dom. | Non-D | Dom. | Non-D | Dom. | Non-D | |||
This study | CKD | N = 39 adults with CKD; age 64 years; BMI 29.3 kg/m2 | 12.4 | 12.7 | 238.0 | 253.4 | 4.6 | 1.8 |
Chang, 2021 [18] | Knee OA at 90° | N = 25 adults with knee OA; age 62.2 years; BMI 24.2 kg/m2 | - | - | 292.5↑ | - | - | |
Aird, 2012 [7] | Healthy a | N = 20 older adults; age 72 years; BMI 25.2 kg/m2 | 16.1↑ | 15.7↑ | 318.8↑ | 310.8↑ | 1.7↓ | 1.7↓ |
Agyapong-Badu, 2016 [19] | Healthy Sedentary b | N = 61 younger adults; age (males 25; females, 27 years); BMI (males 23.2, females 22.9 kg/m2) | Males: 16.4↑ Females: 13.6↑ | Males: 292↑ Females: 233↓ | Males: 1.3↓ Females: 1.2↓ | |||
N = 62 older adults; age (males 74; females, 76 years); BMI (males 25.9 females 25.6 kg/m2) | Males: 16.7↑ Females: 14.9↑ | Males: 328↑ Females: 311↑ | Males: 1.6↓ Females: 1.6↓ | |||||
Mullix, 2012 [20] | Healthy c | N = 21 younger adults; age 26 years; BMI 23.9 kg/m2 | 15.5↑ | 276↑ | 1.32↓ | |||
Ko, 2018 [15] | Complete SCI | N = 13 males with complete SCI (age 54 years) | 18.6↑ | 18.5↑ | 410.3↑ | 407.5↑ | 1.4↓ | 1.3↓ |
Chen, 2019 [21] | Healthy d Sedentary | N = 30 younger adults; age 25 years; BMI 21.0 kg/m2 | 14.9↑ | 15.0↑ | 268.5↑ | 269.1↑ | Not reported | Not reported |
Kocaer, 2021 [22] | Healthy | N = 109 older adults, age 71 years; BMI 28 kg/m2 | 13.0↑ | 13.0↑ | 225↓ | 228↓ | 1.46↓ | 1.43↓ |
Kanafa, 2019 [17] | HD | N = 30 adults aged 51–82 years | 15.6↑ | 326↑ | 1.8↓ | |||
Conclusion | Muscle tone is ↓ in CKD | Muscle stiffness is ↓ in CKD | Muscle elasticity is ↓ in CKD |
Muscle Tone, Hz | Muscle Stiffness, Nm | Muscle Elasticity, log | |||||||
---|---|---|---|---|---|---|---|---|---|
β | t | p | β | t | p | β | t | p | |
Age (years) | 0.045 | 0.305 | 0.763 | 0.002 | 0.011 | 0.991 | 0.066 | 0.341 | 0.736 |
Sex | −0.567 | −3.220 | 0.003 * | −0.368 | −1.886 | 0.071 | −0.027 | −0.117 | 0.908 |
eGFR (mL/min/1.73 m2) | −0.139 | −0.845 | 0.406 | −0.139 | −0.767 | 0.450 | −0.241 | −1.107 | 0.279 |
Haemoglobin (g/L) | 0.128 | 0.639 | 0.528 | 0.070 | 0.316 | 0.755 | −0.221 | −0.860 | 0.398 |
Albumin (g/L) | −0.188 | −1.280 | 0.212 | −0.210 | −1.289 | 0.209 | −0.086 | −0.440 | 0.664 |
Body mass index (kg/m2) | −0.528 | −3.469 | 0.002 * | −0.577 | −3.424 | 0.002 * | −0.081 | −0.399 | 0.694 |
Muscle Tone, Hz | Muscle Stiffness, Nm | Muscle Elasticity, log | |||||||
---|---|---|---|---|---|---|---|---|---|
β | t | p | β | t | p | β | t | p | |
Model 1: Unadjusted | |||||||||
STS−60 (reps) | −0.016 | −0.089 | 0.930 | −0.142 | −0.798 | 0.431 | −0.410 | −2.464 | 0.020 * |
TUAG (seconds) | −0.052 | −0.299 | 0.767 | −0.027 | −0.152 | 0.880 | 0.174 | 1.002 | 0.324 |
SPPB score (AU) | 0.236 | 1.459 | 0.153 | 0.239 | 1.477 | 0.148 | 0.029 | 0.168 | 0.868 |
Gait speed (m/s) | 0.051 | 0.291 | 0.773 | 0.014 | 0.078 | 0.938 | −0.223 | −1.295 | 0.205 |
STS−5 (seconds) | 0.057 | 0.324 | 0.748 | 0.074 | 0.422 | 0.676 | 0.182 | 1.030 | 0.311 |
ISWT (metres) | 0.137 | 0.731 | 0.471 | 0.043 | 0.230 | 0.820 | −0.283 | −1.533 | 0.137 |
Sway area (mm2) | 0.184 | 0.991 | 0.330 | −0.020 | −0.108 | 0.914 | −0.003 | −0.018 | 0.986 |
Sway velocity (mm/s) | 0.008 | 0.043 | 0.966 | −0.014 | −0.073 | 0.942 | 0.282 | 1.553 | 0.132 |
Model 2: Adjusted ¥ | |||||||||
STS−60 (reps) | 0.003 | 0.013 | 0.990 | −0.128 | −0.649 | 0.522 | −0.397 | −1.977 | 0.059 |
TUAG (seconds) | −0.161 | −0.801 | 0.430 | −0.077 | −0.419 | 0.678 | 0.098 | 0.532 | 0.599 |
SPPB score (AU) | 0.341 | 1.912 | 0.065 | 0.269 | 1.625 | 0.114 | 0.110 | 0.640 | 0.527 |
Gait speed (m/s) | 0.082 | 0.395 | 0.695 | 0.022 | 0.119 | 0.906 | −0.166 | −0.894 | 0.379 |
STS−5 (seconds) | −0.052 | −0.254 | 0.801 | −0.020 | −0.104 | 0.918 | 0.019 | 0.095 | 0.925 |
ISWT (metres) | 0.130 | 0.613 | 0.546 | 0.014 | 0.073 | 0.943 | −0.204 | −1.020 | 0.318 |
Sway area (mm2) | −0.143 | −0.750 | 0.460 | −0.175 | −1.032 | 0.312 | 0.005 | 0.028 | 0.978 |
Sway velocity (mm/s) | −0.117 | −0.616 | 0.544 | −0.029 | −0.169 | 0.867 | 0.289 | 1.772 | 0.089 |
Muscle Tone Asymmetry % | Muscle Stiffness Asymmetry % | Muscle Elasticity Asymmetry % | |||||||
---|---|---|---|---|---|---|---|---|---|
β | t | p | β | t | p | β | t | p | |
Model 1: Unadjusted | |||||||||
STS-60 (reps) | −0.060 | −0.324 | 0.748 | −0.144 | −0.786 | 0.438 | 0.177 | 0.970 | 0.340 |
TUAG (seconds) | 0.177 | 0.986 | 0.332 | 0.173 | 0.962 | 0.344 | −0.228 | −1.285 | 0.209 |
SPPB score (AU) | 0.042 | 0.237 | 0.814 | −0.089 | −0.506 | 0.616 | 0.054 | 0.298 | 0.767 |
Gait speed (m/s) | −0.061 | −0.337 | 0.739 | −0.041 | −0.223 | 0.825 | 0.297 | 1.706 | 0.098 |
STS-5 (seconds) | 0.324 | 1.876 | 0.070 | 0.366 | 2.157 | 0.039 * | 0.106 | 0.582 | 0.565 |
ISWT (metres) | −0.338 | −1.829 | 0.079 | −0.282 | −1.500 | 0.146 | 0.181 | 0.940 | 0.356 |
Sway area (mm2) | −0.031 | −0.155 | 0.878 | 0.065 | 0.328 | 0.746 | 0.408 | 2.236 | 0.035 * |
Sway velocity (mm/s) | −0.048 | −0.241 | 0.811 | −0.112 | −0.595 | 0.577 | −0.052 | −0.260 | 0.797 |
Model 2: Adjusted ¥ | |||||||||
STS-60 (reps) | 0.000 | −0.001 | 0.999 | −0.113 | −0.576 | 0.570 | 0.223 | 1.126 | 0.271 |
TUAG (seconds) | 0.171 | 0.861 | 0.397 | 0.165 | 0.866 | 0.394 | −0.304 | −1.617 | 0.118 |
SPPB score (AU) | 0.102 | 0.540 | 0.593 | −0.057 | −0.310 | 0.759 | 0.083 | 0.457 | 0.651 |
Gait speed (m/s) | −0.032 | −0.157 | 0.877 | −0.020 | −0.103 | 0.918 | 0.351 | 1.892 | 0.070 |
STS-5 (seconds) | 0.321 | 1.745 | 0.093 | 0.363 | 2.105 | 0.045 * | 0.040 | 0.209 | 0.836 |
ISWT (metres) | −0.216 | −1.150 | 0.262 | −0.190 | −1.027 | 0.316 | 0.252 | 1.352 | 0.190 |
Sway area (mm2) | −0.150 | −0.847 | 0.406 | 0.010 | 0.057 | 0.955 | 0.292 | 1.861 | 0.077 |
Sway velocity (mm/s) | −0.283 | −1.636 | 0.117 | −0.340 | −2.106 | 0.047 * | −0.186 | −1.103 | 0.282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkinson, T.J.; Gore, E.F.; Baker, L.A.; Smith, A.C. Novel Assessment of Viscoelastic Skeletal Muscle Properties in Chronic Kidney Disease: Association with Physical Functioning. Physiologia 2023, 3, 451-460. https://doi.org/10.3390/physiologia3030032
Wilkinson TJ, Gore EF, Baker LA, Smith AC. Novel Assessment of Viscoelastic Skeletal Muscle Properties in Chronic Kidney Disease: Association with Physical Functioning. Physiologia. 2023; 3(3):451-460. https://doi.org/10.3390/physiologia3030032
Chicago/Turabian StyleWilkinson, Thomas J., Ellie F. Gore, Luke A. Baker, and Alice C. Smith. 2023. "Novel Assessment of Viscoelastic Skeletal Muscle Properties in Chronic Kidney Disease: Association with Physical Functioning" Physiologia 3, no. 3: 451-460. https://doi.org/10.3390/physiologia3030032
APA StyleWilkinson, T. J., Gore, E. F., Baker, L. A., & Smith, A. C. (2023). Novel Assessment of Viscoelastic Skeletal Muscle Properties in Chronic Kidney Disease: Association with Physical Functioning. Physiologia, 3(3), 451-460. https://doi.org/10.3390/physiologia3030032