Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant
Abstract
:1. Introduction
2. Anticancer Studies and Conducting Literature Searches
3. Description of Cinnamaldehyde
4. Anti-Cancer Potential of Cinnamaldehyde
4.1. Cinnamaldehyde on Bladder Cancer
4.2. Cinnamaldehyde on Blood Cancer
4.3. Cinnamaldehyde on Brain Cancer
4.4. Cinnamaldehyde on Breast Cancer
4.5. Cinnamaldehyde on Cervical Cancer
4.6. Cinnamaldehyde on Colon Cancer
4.7. Cinnamaldehyde on Ehrlich Ascites Carcinoma
4.8. Cinnamaldehyde on Gastric Cancer
4.9. Cinnamaldehyde on Head and Neck Cancer
4.10. Cinnamaldehyde on Liver Cancer
4.11. Cinnamaldehyde on Lung Cancer
4.12. Cinnamaldehyde on Oral Cancer
4.13. Cinnamaldehyde on Osteosarcoma Cancer
4.14. Cinnamaldehyde on Ovarian Cancer
4.15. Cinnamaldehyde on Prostate Cancer
4.16. Cinnamaldehyde on Renal Cancer
4.17. Cinnamaldehyde on Skin Cancer
5. AntiCancer Mechanisms of Cinnamaldehydes
5.1. Apoptotic Effect of Cinnamaldehyde on MAPK Regulated Cell Death
5.2. Apoptotic Effect of Cinnamaldehyde on Mitochondria and Members of the Bcl-2 Proteins
5.3. Apoptotic Effect of Cinnamaldehyde on Death Receptors
5.4. Cinnamaldehyde on Cancer Metastasis
5.5. Cinnamaldehyde on Cell Cycle Arrest
6. Safety Profile of Cinnamaldehyde
6.1. Acute Toxicological Study
6.2. Chronic Toxicological Study
7. Results and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, A.; Banerjee, S.; Bose, S.; Das, P.P.; Sandberg, E.N.; Atanasov, A.G.; Bishayee, A.J. Cancer preventive and therapeutic potential of banana and its bioactive constituents: A systematic, comprehensive, and mechanistic review. Front. Oncol. 2021, 11, 697143. [Google Scholar] [CrossRef]
- Morounke, S.G.; Ayorinde, J.B.; Benedict, A.O.; Adedayo, F.F.; Adewale, F.O.; Oluwadamilare, I.; Sokunle, S.S.; Benjamin, A. Epidemiology and incidence of common cancers in Nigeria. Population 2017, 84, 166–629. [Google Scholar]
- India State-Level Disease Burden Initiative Cancer, C. The burden of cancers and their variations across the states of India: The Global Burden of Disease Study 1990–2016. Lancet Oncol. 2018, 19, 1289–1306. [Google Scholar] [CrossRef] [Green Version]
- Smittenaar, C.; Petersen, K.; Stewart, K.; Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 2016, 115, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol. 2019, 54, 407–419. [Google Scholar]
- Sedighi, M.; Zahedi Bialvaei, A.; Hamblin, M.R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019, 8, 3167–3181. [Google Scholar] [CrossRef] [Green Version]
- Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Aljuffali, I.; Fang, C.-L.; Chen, C.-H.; Fang, J.-Y. Nanomedicine as a strategy for natural compound delivery to prevent and treat cancers. Curr. Pharm. Des. 2016, 22, 4219–4231. [Google Scholar] [CrossRef]
- Abubakar, I.B.; Ukwuani-Kwaja, A.N.; Garba, A.D.; Singh, D.; Malami, I.; Salihu, T.S.; Muhammad, A.; Yahaya, Y.; Sule, S.M.; Ahmed, S.J. Ethnobotanical study of medicinal plants used for cancer treatment in Kebbi state, North-west Nigeria. Acta Ecol. Sin. 2020, 40, 306–314. [Google Scholar] [CrossRef]
- Adewole, K.E. Nigerian antimalarial plants and their anticancer potential: A review. J. Integr. Med. 2020, 18, 92–113. [Google Scholar] [CrossRef] [PubMed]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhy, I.; Paul, P.; Sharma, T.; Banerjee, S.; Mondal, A. Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancement. Life 2022, 12, 1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020, 146, 104675. [Google Scholar] [CrossRef]
- Guangfu, T. Cinnamomum (Lauraceae) resources in Hubei Province, China. Wuhan Zhi Wu Xue Yan Jiu Wuhan Bot. Res. 2001, 19, 489–496. [Google Scholar]
- Morsi, D.S.; El-Nabi, S.H.; Elmaghraby, M.A.; Abu Ali, O.A.; Fayad, E.; Khalifa, S.A.; El-Seedi, H.R.; El-Garawani, I.M. Anti-proliferative and immunomodulatory potencies of cinnamon oil on Ehrlich ascites carcinoma bearing mice. Sci. Rep. 2022, 12, 11839. [Google Scholar] [CrossRef]
- Sadeghi, S.; Davoodvandi, A.; Pourhanifeh, M.H.; Sharifi, N.; ArefNezhad, R.; Sahebnasagh, R.; Moghadam, S.A.; Sahebkar, A.; Mirzaei, H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem. 2019, 178, 131–140. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Ibi, A.A.; Kyuka, C.K. Sources, extraction and biological activities of cinnamaldehyde. Trends Pharm. Sci. 2022, 8, 263–282. [Google Scholar]
- Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Altern. Med. 2014, 2014, 642942. [Google Scholar] [CrossRef] [Green Version]
- Panel, T.R.E.; Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J.; Rogers, A.; Saurat, J.; Sipes, I.J.F.; et al. A toxicologic and dermatologic assessment of related esters and alcohols of cinnamic acid and cinnamyl alcohol when used as fragrance ingredients. Food Chem. Toxicol. 2007, 45, S1–S23. [Google Scholar]
- Walter, A.; Seegräber, M.; Wollenberg, A. Food-related contact dermatitis, contact urticaria, and atopy patch test with food. Clin. Rev. Allergy Immunol. 2019, 56, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xie, Y.; Yang, Q.; Cao, Y.; Tu, H.; Cao, W.; Wang, S. Pharmacokinetic study of cinnamaldehyde in rats by GC–MS after oral and intravenous administration. J. Pharm. Biomed. Anal. 2014, 89, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017, 122, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.-U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef]
- Aminzadeh, Z.; Ziamajidi, N.; Abbasalipourkabir, R. Anticancer Effects of Cinnamaldehyde Through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer. Anticancer Agents Med. Chem. 2022, 22, 1139–1148. [Google Scholar] [CrossRef]
- Rosmarin, A. Leukemia, Lymphoma, and Myeloma; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 299–316. [Google Scholar]
- Greim, H.; Kaden, D.A.; Larson, R.A.; Palermo, C.M.; Rice, J.M.; Ross, D.; Snyder, R. The bone marrow niche, stem cells, and leukemia: Impact of drugs, chemicals, and the environment. Ann. N. Y. Acad. Sci. 2014, 1310, 7–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.J.G.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, in press. [Google Scholar] [CrossRef]
- McCabe, B.; Liberante, F.; Mills, K.I. Repurposing medicinal compounds for blood cancer treatment. Ann. Hematol. 2015, 94, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.; Pack, M.Y. Cytotoxicity of cinnamic aldehyde on leukemia L1210 cells. Drug Chem. Toxicol. 1983, 6, 521–535. [Google Scholar] [CrossRef]
- Ka, H.; Park, H.-J.; Jung, H.-J.; Choi, J.-W.; Cho, K.-S.; Ha, J.; Lee, K.-T. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett. 2003, 196, 143–152. [Google Scholar] [CrossRef]
- Fang, S.-H.; Rao, Y.K.; Tzeng, Y.-M. Cytotoxic effect of trans-cinnamaldehyde from cinnamomum osmophloeum leaves on Human cancer cell lines. Int. J. Appl. Sci. Eng. 2004, 2, 136–147. [Google Scholar]
- Zhang, J.-H.; Liu, L.-Q.; He, Y.-L.; Kong, W.-J.; Huang, S.-A. Cytotoxic effect of trans-cinnamaldehyde on human leukemia K562 cells. Acta Pharmacol. Sin. 2010, 31, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Sharma, M.; Kumar, L.; Husain, S.A.; Sharma, A. Cinnamon extract exhibits potent anti-proliferative activity by modulating angiogenesis and cyclooxygenase in myeloma cells. J. Herb. Med. 2016, 6, 149–156. [Google Scholar] [CrossRef]
- Ho, S.-C.; Chang, Y.-H.; Chang, K.-S. Structural moieties required for cinnamaldehyde-related compounds to inhibit canonical IL-1β secretion. Molecules 2018, 23, 3241. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhang, W.; Zheng, Q.; Wei, Z.; Wang, Y.; Hu, M.; Ma, F.; Tao, N.; Luo, C. Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4. Oncol. Lett. 2019, 18, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Ma, J.; Guan, L.; Liu, X.; Wang, A.; Hu, C.-H. Proliferation effects of cinnamon extract on human HeLa and HL-60 tumor cell lines. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5347–5354. [Google Scholar] [PubMed]
- Jeong, H.; Park, J.; Shim, J.-K.; Lee, J.E.; Kim, N.H.; Kim, H.S.; Chang, J.H.; Yook, J.I.; Kang, S.-G. Combined treatment with 2′-hydroxycinnamaldehyde and temozolomide suppresses glioblastoma tumorspheres by decreasing stemness and invasiveness. J. Neuro-Oncol. 2019, 143, 69–77. [Google Scholar] [CrossRef]
- Abbasi, A.; Hajialyani, M.; Hosseinzadeh, L.; Jalilian, F.; Yaghmaei, P.; Navid, S.J.; Motamed, H. Evaluation of the cytotoxic and apoptogenic effects of cinnamaldehyde on U87MG cells alone and in combination with doxorubicin. Res. Pharm. Sci. 2020, 15, 26. [Google Scholar]
- Chen, J.-C.; Hsieh, P.-S.; Chen, S.-M.; Hwang, J.-H. Effects of Cinnamaldehyde on the viability and expression of chemokine receptor genes in Temozolomide-treated Glioma cells. In Vivo 2020, 34, 595–599. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, K.; Nam, S.; Anderson, R.A.; Jove, R.; Wen, W. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis 2010, 31, 481–488. [Google Scholar] [CrossRef]
- Vangalapati, M.; Prakash, D. In-vitro anti-cancer studies of Cinnamaldehyde on breast cancer cell line (MCF-7). BioTechnology 2013, 7, 81–84. [Google Scholar]
- Abd Wahab, W.; Adzmi, A.N. The investigation of cytotoxic effect of Cinnamomum zeylanicum extracts on human breast cancer cell line (MCF7). Sci. Herit. J. 2017, 1, 23–28. [Google Scholar] [CrossRef]
- Kostrzewa, T.; Przychodzen, P.; Gorska-Ponikowska, M.; Kuban-Jankowska, A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res. 2019, 39, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-F.; Chen, H.-Y.; Huang, K.-C.; Lin, P.-H.; Hsia, S.-M. Dietary antioxidant trans-cinnamaldehyde reduced visfatin-induced breast cancer progression: In vivo and in vitro study. Antioxidants 2019, 8, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; An, T.; Wan, D.; Yu, B.; Fan, Y.; Pei, X. Targets and mechanism used by cinnamaldehyde, the main active ingredient in cinnamon, in the treatment of breast cancer. Front. Pharmacol. 2020, 11, 582719. [Google Scholar] [CrossRef]
- Poornima, B.; Deeba, F. Activities of cinnamaldehyde from Boswellia serrata on MCF-7 breast cancer cell line. J. Innov. Dev. Pharm. Tech. Sci. 2020, 3, 35–43. [Google Scholar]
- Kuo, Y.-T.; Liu, C.-H.; Wong, S.H.; Pan, Y.-C.; Lin, L.-T. Small molecules baicalein and cinnamaldehyde are potentiators of measles virus-induced breast cancer oncolysis. Phytomedicine 2021, 89, 153611. [Google Scholar] [CrossRef]
- Schuster, C.; Wolpert, N.; Moustaid-Moussa, N.; Gollahon, L.S. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants 2022, 11, 591. [Google Scholar] [CrossRef]
- Yi, X.; Hou, L.; Tan, X.; Pei, T.; Li, S.; Huang, L. Cinnamic Aldehyde Induces Apoptosis of Breast Cancer Cells via STAT3/cMyc Pathway. 2022. preprint. [Google Scholar] [CrossRef]
- Jaisamak, K.; Iawsipo, P.; Ponglikitmongkol, M. Anti-invasion activity of trans-4-methoxy-cinnamaldehyde (4-MCA) in cervical cancer cells. In Proceedings of the 6th International Conference on Biochemistry and Molecular Biology (BMB 2018), Tokyo, Japan, 18–20 January 2018. [Google Scholar]
- GT, W.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules 2010, 15, 3338–3355. [Google Scholar]
- Long, M.; Tao, S.; Rojo de la Vega, M.; Jiang, T.; Wen, Q.; Park, S.L.; Zhang, D.D.; Wondrak, G.T. Nrf2-Dependent Suppression of Azoxymethane/Dextran Sulfate Sodium–Induced Colon Carcinogenesis by the Cinnamon-Derived Dietary Factor CinnamaldehydeNrf2-Directed Colon Cancer Chemoprevention by Cinnamaldehyde. Cancer Prev. Res. 2015, 8, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Liu, S.-L.; Qi, M.-H.; Zou, X. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer. Mol. Med. Rep. 2014, 9, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Teng, Y.; Liu, S.; Wang, Z.; Chen, Y.; Zhang, Y.; Xi, S.; Xu, S.; Wang, R.; Zou, X. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol. Rep. 2016, 35, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.-A.; Kim, S.-A. 2′-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression. Int. J. Oncol. 2017, 50, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, G.H.; Song, H.M.; Park, S.B.; Son, H.-J.; Um, Y.; Kim, H.-S.; Jeong, J.B. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement. Altern. Med. 2018, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Anju, R.; Sunitha, M.; Nevin, K.G. Cinnamon extract enhances the mitochondrial reactive oxygen species production and arrests the proliferation of human colon cancer cell line, HCT-116. J. Herbs Spices Med. Plants 2018, 24, 293–301. [Google Scholar] [CrossRef]
- Wu, C.-E.; Zhuang, Y.-W.; Zhou, J.-Y.; Liu, S.-L.; Wang, R.-P.; Shu, P. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp. Cell Res. 2019, 383, 111500. [Google Scholar] [CrossRef]
- Milani, A.T.; Rashidi, S.; Mahmoudi, R.; Douna, B.K. Cytotoxic activity of epigallocatechin and trans-cinnamaldehyde in gastric cancer cell line. Asian Pac. J. Cancer Biol. 2019, 4, 71–74. [Google Scholar] [CrossRef]
- Lee, S.; Jung, J. trans-Cinnamaldehyde-Induced Apoptosis in AGS Cells. J. Food Hyg. Saf. 2021, 36, 100–104. [Google Scholar] [CrossRef]
- Kim, T.W. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol. Sin. 2022, 43, 712–723. [Google Scholar] [CrossRef]
- Ahn, S.-G.; Jin, Y.-H.; Yoon, J.-H.; Kim, S.-A. The anticancer mechanism of 2′-hydroxycinnamaldehyde in human head and neck cancer cells. Int. J. Oncol. 2015, 47, 1793–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.-M.; Kim, J.; Kang, S.H.; Oh, S.Y.; Lee, H.-J.; Kwon, B.-M.; Hong, S.-H. Up-regulation of Bone Morphogenetic Protein 7 by 2-Hydroxycinnamaldehyde Attenuates HNSCC Cell Invasion. Antican. Res. 2018, 38, 5747–5757. [Google Scholar] [CrossRef]
- Ng, L.-T.; Wu, S.-J. Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evid. Based Complement. Altern. Med. 2011, 2011, 492148. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.-T.; Tai, C.-J.; Chang, S.-P.; Chen, J.-L.; Wu, S.-J.; Lin, C.-C. Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk. Anti-Cancer Agents Med. Chem. 2013, 13, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Abd El Salam, A.S.G.; Samra, Y.A.; El-Shishtawy, M.M. Cinnamaldehyde Relieves Induced Hepatocellular Carcinoma in Rat Model via Targeting Wnt/β-Catenin Pathway. Sci. Pharm. 2022, 90, 22. [Google Scholar] [CrossRef]
- Haripriya, D.; Santhosh, A.; Bupesh, G.; Roshini, P.; Nivedha, S.; Padmashree, S.; Srivatsan, P.; Bhaskar, M.; Saravanan, K.M. Immunomodulatory and Apoptotic Effect of Cinnamaldehyde in HepG2 Cells. Biointerface Res. Appl. Chem. 2022, 13. [Google Scholar]
- Wong, H.Y.; Tsai, K.d.; Liu, Y.H.; Yang, S.m.; Chen, T.W.; Cherng, J.; Chou, K.S.; Chang, C.M.; Yao, B.T.; Cherng, J.M. Cinnamomum verum component 2-methoxycinnamaldehyde: A novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma a549 cells in vitro and in vivo. Phytother. Res. 2016, 30, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Geng, S.; Du, Z.; Yao, J.; Zheng, Y.; Li, Z.; Zhang, Z.; Li, J.; Duan, Y.; Du, G. Berberine and cinnamaldehyde together prevent lung carcinogenesis. Oncotarget 2017, 8, 76385. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-H.; Tsai, K.-D.; Yang, S.-M.; Wong, H.-Y.; Chen, T.-W.; Cherng, J.; Cherng, J.-M. Cinnamomum verum ingredient 2-methoxycinnamaldehyde: A new antiproliferative drug targeting topoisomerase I and II in human lung squamous cell carcinoma NCI-H520 cells. Eur. J. Cancer Prev. 2017, 26, 314–323. [Google Scholar] [CrossRef]
- Park, J.; Baek, S.H. Combination therapy with cinnamaldehyde and hyperthermia induces apoptosis of A549 non-small cell lung carcinoma cells via regulation of reactive oxygen species and mitogen-activated protein kinase family. Int. J. Mol. Sci. 2020, 21, 6229. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Cheng, F.C.; Wang, S.P.; Chou, S.T.; Shih, Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ. Toxicol. 2017, 32, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Narasimhan, M.; Balaji, T.M.; Chamundeeswari, D.P.; Sakthisekaran, D. In vitro anticancer effects of Cinnamomum verum J. Presl, Cinnamaldehyde, 4 Hydroxycinnamic acid and Eugenol on an oral squamous cell carcinoma cell line. J. Contemp. Dent. Pr. 2020, 21, 1027–1033. [Google Scholar]
- Ahmed, B. Effect of Cinnamon Oil and Scorpion Venom on Oral Squamous Cell Carcinoma Cell Line (In vitro study). Egypt. Dent. J. 2022, 68, 533–541. [Google Scholar] [CrossRef]
- Aggarwal, S.; Bhadana, K.; Singh, B.; Rawat, M.; Mohammad, T.; Al-Keridis, L.A.; Alshammari, N.; Hassan, M.I.; Das, S.N. Cinnamomum zeylanicum Extract and its Bioactive Component Cinnamaldehyde Show Anti-Tumor Effects via Inhibition of Multiple Cellular Pathways. Front. Pharmacol. 2022, 13, 918479. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, J.; Yang, S.; Tan, T.; Wang, N.; Wang, Y.; Zhang, L.; Yang, C.; Huang, H.; Luo, J.; et al. Cinnamaldehyde inhibits the function of osteosarcoma by suppressing the Wnt/β-catenin and PI3K/Akt signaling pathways. Drug Des. Dev. Ther. 2020, 14, 4625. [Google Scholar] [CrossRef]
- Zhang, K.; Han, E.S.; Dellinger, T.H.; Lu, J.; Nam, S.; Anderson, R.A.; Yim, J.H.; Wen, W. Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice. Mol. Carcinog. 2017, 56, 436–446. [Google Scholar] [CrossRef]
- Jae-young, J. Cinnamaldehyde Enhances Cytotoxic Effect of Cisplatin by ROS-Induced Autophagy in Cisplatin-Resistant Ovarian Cancer Cells; Seoul National University Graduate School: Seoul, Republic of Korea, 2017. [Google Scholar]
- Boggiti, M.; Penchalaneni, J. Effect of Cinnamaldehyde on Female Reproductive Hormones in 7, 12 Dimethyl Benzanthracene Induced Ovarian Cancer Rats. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 346–350. [Google Scholar] [CrossRef]
- Han, L.; Mei, J.; Ma, J.; Wang, F.; Gu, Z.; Li, J.; Zhang, Z.; Zeng, Y.; Lou, X.; Yao, X.; et al. Cinnamaldehyde induces endogenous apoptosis of the prostate cancer-associated fibroblasts via interfering the Glutathione-associated mitochondria function. Med. Oncol. 2020, 37, 91. [Google Scholar] [CrossRef]
- Bae, W.-Y.; Choi, J.-S.; Kim, J.-E.; Jeong, J.-W. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression. Biochem. Pharmacol. 2015, 98, 41–50. [Google Scholar] [CrossRef]
- Ahn, C.R.; Park, J.; Kim, J.-E.; Ahn, K.S.; Kim, Y.W.; Jeong, M.; Kim, H.J.; Park, S.H.; Baek, S.H. Cinnamaldehyde and hyperthermia co-treatment synergistically induces ROS-mediated apoptosis in ACHN renal cell carcinoma cells. Biomedicines 2020, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Cabello, C.M.; Bair III, W.B.; Lamore, S.D.; Ley, S.; Bause, A.S.; Azimian, S.; Wondrak, G.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free. Radic. Biol. Med. 2009, 46, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.-K.; Jeon, W.K.; Hwang, J.-S.; Lee, C.-G.; So, J.-S.; Park, J.-A.; Ko, B.S.; Im, S.-H. Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells. Cancer Lett. 2009, 278, 174–182. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Hwang, J.-S.; So, J.-S.; Lee, C.-G.; Sahoo, A.; Ryu, J.-H.; Jeon, W.K.; Ko, B.S.; Im, C.-R.; Lee, S.H. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1. BMC Cancer 2010, 10, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, K.; Jana, S.; Sarkar, A.; Mandal, D.P.; Bhattacharjee, S. The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. Biofactors 2019, 45, 401–415. [Google Scholar] [CrossRef]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geest, C.R.; Coffer, P.J. MAPK signaling pathways in the regulation of hematopoiesis. J. Leukoc. Biol. 2009, 86, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Harper, S.J.; LoGrasso, P. Signalling for survival and death in neurones: The role of stress-activated kinases, JNK and p38. Cell. Signal. 2001, 13, 299–310. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, N.; Nantajit, D.; Fan, M.; Liu, Y.; Li, J.J. Mitogen-activated protein kinase phosphatase-1 represses c-Jun NH2-terminal kinase-mediated apoptosis via NF-κB regulation. J. Biol. Chem. 2008, 283, 21011–21023. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Liao, Q.Y.; Hantash, F.M.; Sanders, B.G.; Kline, K. Activation of extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-α-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res. 2001, 61, 6569–6576. [Google Scholar]
- Chen, C.; Shen, G.; Hebbar, V.; Hu, R.; Owuor, E.D.; Kong, A.-N. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 2003, 24, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Kim, B.R.; Chen, C.; Hebbar, V.; Kong, A.-N. The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinogenesis 2003, 24, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-J.; Kuo, H.-C.; Chu, C.-Y.; Wang, C.-J.; Lin, W.-C.; Tseng, T.-H. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem. Pharmacol. 2003, 66, 2281–2289. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-J.; Ng, L.-T.; Lin, C.-C. Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci. 2005, 77, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Lee, S.H.; Lee, J.W.; Ban, J.O.; Lee, S.Y.; Yoo, H.S.; Jung, J.K.; Moon, D.C.; Oh, K.W.; Hong, J.T. 2-hydroxycinnamaldehyde inhibits SW620 colon cancer cell growth through AP-1 inactivation. J. Pharmacol. Sci. 2007, 104, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683. [Google Scholar] [CrossRef]
- Roth-Walter, F.; Moskovskich, A.; Gomez-Casado, C.; Diaz-Perales, A.; Oida, K.; Singer, J.; Kinaciyan, T.; Fuchs, H.C.; Jensen-Jarolim, E. Immune suppressive effect of cinnamaldehyde due to inhibition of proliferation and induction of apoptosis in immune cells: Implications in cancer. PLoS ONE 2014, 9, e108402. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, C.W.; Lee, J.W.; Choi, M.S.; Son, D.J.; Chung, Y.B.; Lee, C.K.; Oh, K.W.; Moon, D.C.; Kwon, B.M.; et al. Induction of apoptotic cell death by 2′-hydroxycinnamaldehyde is involved with ERK-dependent inactivation of NF-κB in TNF-α-treated SW620 colon cancer cells. Biochem. Pharmacol. 2005, 70, 1147–1157. [Google Scholar] [CrossRef]
- Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267, 1456–1462. [Google Scholar] [CrossRef]
- Kroemer, G.; Reed, J.C. Mitochondrial control of cell death. Nat. Med. 2000, 6, 513–519. [Google Scholar] [CrossRef]
- Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15, 2922–2933. [Google Scholar]
- Desagher, S.; Martinou, J.-C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000, 10, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 2007, 87, 99–163. [Google Scholar] [CrossRef] [PubMed]
- Danial, N.N.; Korsmeyer, S.J. Cell death: Critical control points. Cell 2004, 116, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Zhang, X.Y.; Gray, C.P.; Nguyen, T.; Hersey, P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res. 2001, 61, 7339–7348. [Google Scholar]
- Arnt, C.R.; Chiorean, M.V.; Heldebrant, M.P.; Gores, G.J.; Kaufmann, S.H. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J. Biol. Chem. 2002, 277, 44236–44243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.J.; Ng, L.T.; Lin, C.C. Effects of vitamin E on the cinnamaldehyde-induced apoptotic mechanism in human PLC/PRF/5 cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Walczak, H.; Krammer, P.H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 2000, 256, 58–66. [Google Scholar] [CrossRef]
- Krammer, P.H. CD95’s deadly mission in the immune system. Nature 2000, 407, 789–795. [Google Scholar] [CrossRef]
- Rowinsky, E.K. Targeted induction of apoptosis in cancer management: The emerging role of tumor necrosis factor–related apoptosis-inducing ligand receptor activating agents. J. Clin. Oncol. 2005, 23, 9394–9407. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-C.; Kuo, Y.-H.; Kuo, C.-C.; Chen, L.-T.; Cheung, C.-H.A.; Chao, T.-Y.; Lin, C.-H.; Pan, W.-Y.; Chang, C.-Y.; Chien, S.-C.; et al. Chamaecypanone C, a novel skeleton microtubule inhibitor, with anticancer activity by trigger caspase 8-Fas/FasL dependent apoptotic pathway in human cancer cells. Biochem. Pharmacol. 2010, 79, 1261–1271. [Google Scholar] [CrossRef]
- Hsu, Y.-L.; Kuo, P.-L.; Lin, C.-C. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem. Pharmacol. 2004, 67, 823–829. [Google Scholar] [CrossRef]
- Singh, N.P.; Singh, U.P.; Hegde, V.L.; Guan, H.; Hofseth, L.; Nagarkatti, M.; Nagarkatti, P.S. Resveratrol (trans-3, 5, 4′-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-κB. Mol. Nutr. Food Res. 2011, 55, 1207–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.; Wilder, S.; Bannasch, D.; Israeli, D.; Lehlbach, K.; Li-Weber, M.; Friedman, S.L.; Galle, P.R.; Stremmel, W.; Oren, M. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 1998, 188, 2033–2045. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.-C.; Shin, W.-C.; Choi, Y.; Kim, H.; Park, J.H.; Kim, S.J. Effect of interferon-γ on the susceptibility to Fas (CD95/APO-1)-mediated cell death in human hepatoma cells. Cancer Immunol. Immunother. 2001, 50, 23–30. [Google Scholar] [CrossRef]
- Komarov, P.G.; Komarova, E.A.; Kondratov, R.V.; Christov-Tselkov, K.; Coon, J.S.; Chernov, M.V.; Gudkov, A.V. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999, 285, 1733–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlot, J.; Nicolier, M.; Pretet, J.; Mougin, C. Modulation of p53 transcriptional activity by PRIMA-1 and Pifithrin-α on staurosporine-induced apoptosis of wild-type and mutated p53 epithelial cells. Apoptosis 2006, 11, 813–827. [Google Scholar] [CrossRef]
- Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassiacauses apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 2010, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Lu, Y.; Yang, G.; Wu, J. Research on tumorigenicity of cinnamaldehyde in melanoma cell lines and its mechanism. Tumor Biol. 2014, 35, 5717–5722. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kang, H.S.; Park, B.E.; Moon, H.J.; Sim, S.S.; Kim, C.J. Inhibitory effects of Geijigajakyak-Tang on trinitrobenzene sulfonic acid-induced colitis. J. Ethnopharmacol. 2009, 126, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, K.; Santegoets, S.J.; Bruynzeel, D.P.; Scheper, R.J.; de Gruijl, T.D.; Gibbs, S. CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur. J. Immunol. 2008, 38, 3050–3059. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Wang, S.-M.; Lu, Q.; Luo, J.; Cheng, Y.-X. Identification of compounds from the water soluble extract of Cinnamomum cassia barks and their inhibitory effects against high-glucose-induced mesangial cells. Molecules 2013, 18, 10930–10943. [Google Scholar] [CrossRef] [Green Version]
- Dugoua, J.-J.; Seely, D.; Perri, D.; Cooley, K.; Forelli, T.; Mills, E.; Koren, G. From type 2 diabetes to antioxidant activity: A systematic review of the safety and efficacy of common and cassia cinnamon bark. Can. J. Physiol. Pharmacol. 2007, 85, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Murali, K.; Tandon, V.; Murthy, P.; Chandra, R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem. Interact. 2010, 186, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Hooth, M.; Sills, R.; Burka, L.; Haseman, J.; Witt, K.; Orzech, D.; Fuciarelli, A.; Graves, S.; Johnson, J.; Bucher, J.J.F.; et al. Toxicology and carcinogenesis studies of microencapsulated trans-cinnamaldehyde in rats and mice. Food Chem. Toxicol. 2004, 42, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Cell Line Used | Effect and Mechanism | Dose/IC50/EC50 Value (µM)/mM | Reference |
---|---|---|---|---|
Bladder cancer | bladder cancer 5637 cell lines | ↑apoptosis, ↓glucose uptake, ↓lactate production, ↓HSF-1, ErbB2, and LDHA gene expressions, ↓HSF1 and LDHA protein levels | 0.02, 0.04, and 0.08 mg/mL | [26] |
Blood cancer | Leukemia L1210 cell lines | ┴cellular growth, ┴protein synthesis via entrapping sulfhydryl-containing amino acids inside the cell | 4.8 µg/mL | [31] |
human promyelocytic leukemia HL-60 | ↑apoptosis, ↑ROS-mediated mitochondrial permeability transition, ↑cytochrome c release | 40 µM | [32] | |
Jurkat and U937 cells | ┴cell growth, ↓cells counts at G0/G1 phase | 0.057 and 0.076 µM respectively | [33] | |
human leukemia K562 cell line and CIK cells | ↑apoptosis, ↑Fas expression, ↓mitochondrial transmembrane potential in K562 cells, ↑cytotoxicity in CIK cells | 120 and 180 μM | [34] | |
human myeloma cell line RPMI 8226 | ┴proliferation, ↓cell growth, ↓expression of angiogenic factors and cyclooxygenase at the mRNA and protein levels, ┴cell cycle at the G0/G1 phase, ↑DNA fragmentation | 72 mg/mL | [35] | |
human monocytic THP-1 cell lines | ┴IL-1β secretion dose dependently, ↓pro-IL-1β and NLRP3, ┴ATP-induced decrease in cytosolic pro-caspase-1 and increase in secreted caspase-1 | 25 to 100 µM | [36] | |
myeloid-derived suppressor cells isolated from the spleens of TLR4−/− mice that had colon cancer (MC38 tumor) | ┴cell proliferations via TLR4-dependent pathway, ↑apoptosis, ↑Bax, ↑caspase9, ↓Bcl-2 | 4 μg/mL | [37] | |
HL-60 cell lines | ↓tumour cells, ↓expression of cyclin A, cyclin B1, ERK2, and p-ERK | 0 to 0.8 mg/mL | [38] | |
Brain cancer | TS14-15 and TS15-88 cells | ↓cellular growth, invasiveness, and cell survival, ↑cytotoxicity, ↓expression levels of invasiveness, cell differentiation, and mesenchymal transition markers N-cadherin, Zeb1, and β-catenin | 2′-hydroxycinnamaldehyde (5 μM) and temozolomide (250 μM) | [39] |
U87MG cells | ↑cytotoxicity, ↓prolofiration, ↑caspase-3 and -9 levels, ↑MMP activity, ↑Bcl-2 and Bax gene expressions | cinnamaldehyde 11.6 µg/mL) and doxorubicin were (5 µg/mL) | [40] | |
T98G glioma cells | ↓cell viability, ┴CXCR4 expression | cinnamaldehyde (75 μM) and temozolomide (300 μM) | [41] | |
Breast cancer | HUVEC and bovine capillary endothelial cell | ┴tube formation ┴VEGF, ┴proliferation, migration, and ┴tumors, ┴purified VEGFR2 kinase, ┴MAPK and STAT3-mediated signaling cascade | 32 µg/mL (tube formation) 30–100 ng/mL | [42] |
MCF-7 cancer cell lines | ┴cellular growth by 32.3% | 200 µg/mL | [43] | |
↑cytotoxicity, ↓cellular growth | 58 (at 24 h) and 140 µg/mL (at 48 h) | [44] | ||
↓PTP1B activity, ┴cancer cells | 500 μM, 50 μM | [45] | ||
MDA-MB-231-GFP | ┴cancer cell line, ↓mTOR, p-mTOR, p-PI3K, PCNA, and PI3K proteins, ↓intra- and extra-cellular NAMPT protein expressions | 25–100 µM cinnamaldehyde (75 µM) and FK866 (100 nM) | [46] | |
MDA-MB-231 cells | ↓proliferation, ↑apoptosis, ↓migration and invasion | 16.9 μg/mL (24 h), 12.23 μg/mL (48 h) 10, 15, and 20 μg/mL 15 and 20 μg/mL | [47] | |
MCF-7 cells | ↑cytotoxicity, ┴cellular growth, ┴colony forming/ reproductive ability | 100 μM | [48] | |
↑cytotoxicity, ↑anti-tumor activity, ↑apoptosis | 60–400 μM (cytotoxicity alone) 60 and 80 μM (cinnamaldehyde) and measles virus (MOI: 0.1) | [49] | ||
MDA-MB-231, MCF-7, and HCC1419 breast cancer cell lines | ↑cell death, ↓mitochondrial membrane potential, ↑superoxide generation | 35 µM (cinnamaldehyde) and 250 µg/mL (chlorogenic acid) | [50] | |
MDA-MB-231, MCF-7, and 4T1 cells | ┴cell growth and migration in dose dependent way, ┴proliferation, ↑apoptosis | 5, 10, 20, 40, and 80 μg/mL | [51] | |
Cervical cancer | C-33A cervical cancer cells | ↑apoptosis, ┴invasive capacity, ↓cell invasion of HPV16-expressing C-33A cells, ↓MMP14 expression | 110 μM (4-methoxycinnamaldehyde) | [52] |
Hela cells | ↓tumour cells, ↓expression of cyclin A, cyclin B1, ERK2, and p-ERK | 0 to 0.8 mg/mL | [38] | |
Colon cancer | HT29, HCT116 cells | ↑cellular Nrf2 protein levels, ↑γ-glutamyl-cysteine synthetase, ↑HO-1, ↑cellular glutathione level | 10 µM | [53] |
HCT116 cells | ↑Nrf2 protein half-life, ┴ubiquitination, ↑cellular glutathione | 20 µM | [54] | |
LoVo and HT-29 cells | ↑cytotoxic effects, ↓mRNA expression of TOPO1, BRCA1, TS, and ERCC1, ↑OPRT | 9.48 (Lovo) and 9.12 μg/mL (HT-29) | [55] | |
HCT116, SW480, and LoVo cells | ┴proliferation in time- and dose-dependently, ↓adhesion and invasion, ↑E-cadherin, ↓MMP-2 and -9, ↑apoptosis, ↑pro-apoptotic effect, ↓PI3K/AKT transcription activity | 20, 40, and 80 µg/mL | [56] | |
SW620 and SW480 colon cancer cells | ↑caspase-7, -9, and PARP, ↑apoptosis, ↑HSF1, ↑BAG3 mRNA and protein levels in time- and dose-dependent way | 50 µM (2′-hydroxycinnamaldehyde) | [57] | |
LoVo, HCT116, HT-29, and SW480 cells | ↓cyclin D1 protein level, ↓cyclin D1 mRNA, ↓Wnt pathway, ┴β-catenin and TCF4 production, ↑apoptosis, ↑NF-κB, ↑ATF3, ┴proliferation | 100 μg/mL | [58] | |
HCT 116 colon cancer cell line | ↑cyto-toxicity, ↑Superoxide anion, ↑ROS generation, ↓mitochondrial membrane potential, ┴proliferation | 0.4 µg/mL | [59] | |
colon cancer HCT116 and SW480 cells | ↑apoptosis, ↑Bax, cleave caspase-3 and PARP, ↓Bcl-2 | 40 μg/mL | [60] | |
Gastric cancer | AGS cells | ┴cellular development | 2 mg/mL | [61] |
↑apoptosis, ↑cleaved caspase-9 ↑cleaved PARP, ↑p53, ↑Bax proteins | 100 µM | [62] | ||
gastric cancer SNU-216, SNU-638, AGS, MKN-45, NCI-N87, and MKN-74 cells | ↑ER stress, ↑cell death, ↑calcium ion, ↑autophagy, ↑ATG5, ↑Beclin-1, ↑LC3B expressions, ↓p62 expression, ↓G9a function | 50 µg/mL | [63] | |
Head and neck cancer | human head and neck p53-mutant (YD-10B) and p53-wild (SGT) cancer cells | ↑apoptosis, ┴proliferative effects, ↑caspase-3, -7, and -9, ↑PARP, ↑p21 expression, ↑Bak1, ↓Bcl-2, ↑LC3B expression, ↑autophagy | 50 μM (2′-hydroxycinnamaldehyde) | [64] |
head and neck squamous cell carcinoma FaDU cells | ┴cell motility, ┴spheroids’ invasion of Matrigel, ↑mRNA, ↑exogenous BMP7, ↓invasion of cells | 250 to 500 nM (2′-hydroxycinnamaldehyde) | [65] | |
Liver cancer | human hepatoma Hep G2 cells | ┴proliferation, ↑CD95 (APO-1), ↑p53, ↑Bax, ↓Bcl-XL, ↑apoptosis | 9.76 μM | [66] |
PLC/PRF/5 cells | ↑caspase-3, ↑ROS, ↓mitochondria membrane potential, ↑release of cytochrome c and Smac/DIABLO, ↓XIAP, ↓Bcl-2, ↑Bax, ↑apoptosis | — | [67] | |
HepG2 cells | ↑IL-1 levels, ↓IL-10 levels, ↑caspase-3, ┴prolifiration | 35 µM | [69] | |
Lung caner | A549 cells | ┴cell proliferation, ↑apoptosis, ↑Bax, ↑Bak, ↓Bcl-2, ↓Bcl-XL, ↓mitochondrial membrane potential, ↑cytochrome c, ↑caspase-3 and -9, ↑lysosomal vacuolation, ↑volume of the acidic compartment, ↓NF-κB, ↓topoisomerases I and II activity, ↓NF-κB binding activity, ↓topoisomerase I and II activities | 32 μM | [70] |
A549 cells | ↑apoptosis, ↓ATP production, ↑AMPK, ↓AQP-1 | — (berberine and cinnamaldehyde) | [71] | |
human lung squamous cell carcinoma NCI-H520 cells | ↓mitochondrial membrane potential, ↑caspases-3 and -9, ↑apoptotic, ┴topoisomerase-I and -II activities, ↑cytotoxicity | 20 μM (2-methoxycinnamaldehyde) | [72] | |
Oral cancer | human oral squamous cell carcinoma HSC-3 cells | ┴cell cycle at G2/M phase, ↓cell viability, ↑apoptosis, ↓mitochondrial membrane potential, ↑cytochrome c release, ↑cytosolic Ca21 levels, ↓glutathione peroxidase activity, ↑ROS | 10 µg/mL | [74] |
oral squamous cell carcinoma SCC25 cell line | ↑apoptosis, ┴cell cycle at S-phase. ↓mitochondrial membrane potential, ↑cytotoxicity | 20.21 μM | [75] | |
oral squamous cell carcinoma SCC25 cell line | ↑cytotoxicity, ↑apoptosis, ↓nuclear area factor,↑p53, ↑Bax, ↓Bcl-2 | 90.40 (at 24 h) and 42.95 µg/mL (at 48 h) for cinnamaldehyde 4.93 (at 24 h) and 4.40 µg/mL (at 48 h) for combination of cinnamaldehyde and scorpion venom | [76] | |
oral cancer SCC-25, SCC-9, SCC-4 cells | ↓cell development, ┴proliferation, ↑apoptosis, ┴cell cycle at G2/M, ↑cytotoxicity, ↑autophagy, ↓invasion ↓COX-2, ↓VEGF, ↓Bcl-2, ↓NF-κB | 80 μM | [77] | |
Osteosarcoma cancer | ┴cell growth, ↑apoptosis in a concentration-dependent manner, ↑Bad gene expression, ↓Bcl-2 and PARP genes expression, ┴migration and invasion of osteosarcoma cell lines, ┴cell cycle at G2/M phase (143B), ┴cell cycle at G0/G1 phase (MG63), ↓Wnt/β-catenin and ↓PI3K/Akt expression | 67.95 µM (143B), 56.68 µM (MG63) | [78] | |
Ovarian cancer | human ovarian cancer SKOV3 cells | ↓AKT and STAT3 expression and phosphorylation, ↓angiogenesis capacity of cancer cells | 10 mg/mL | [79] |
A2780/s, cisplatin-resistant A2780/cis cells | ↓cell growth, ↑ROS, ↑apoptosis, ↑autophagy | 43 μM (A2780/s) 51 μM (cinnamaldehyde) & 10 µM (cisplatin) | [80] | |
Prostate cancer | prostate cancer-associated fibroblasts hTERT PF179T cell line | ↑apoptosis, ┴cell cycle at G2/M phase, ↓proliferation, ↑calcium ion, ↑ROS, ↓mitochondrial membrane potential, ↓Bcl-2, ↓caspase-9, ↓PARP, ↓DEF-45, ↑cytochrome c, ↑Bax, ↑cleaved caspase-3, ↑cleaved PARP | 150 μΜ | [82] |
Renal cancer | Renca cells | ↓HIF-1a protein and ↓VEGF, ↓cell growth | 100 µM | [83] |
Renal cell carcinoma ACHN cell lines | ↓heat shock protein 70, ↑apoptosis, ┴cell cycle at G2/M phase, ↑ROS | 90 µM (cinnamaldehyde) and hyperthermia (43 °C) | [84] | |
Skin cancer | human metastatic melanoma LOX, G361, and A375 cell lines | ┴proliferation, ┴ cell-cycle arrest at G1 phase, ↑ROS, ↓invasiveness ↑HO-1, ↑sulfiredoxin 1 homolog, ↑thioredoxin reductase 1, ↑G1-arresting tumor-suppressor gene CDKN1A, ↓TNF-induced IL-8 production, ↓NF-κB transcriptional activity | 3.4 µM (LOX), 8.1 µM, (G361) and 6.3 µM (A375) | [85] |
mouse melanoma cell lines Clone-M3 and B16F10 | ↓VEGF-α, ↓EGF, ↓FGF, ↓TGF-β, ↓HIF-1, ↓Cox-2, ↑cytotoxic activity of CD8+ T lymphocytes ↑interferon gamma, ↑TNF-α | 0.5 mg/mL | [86] | |
↓cellular growth, ↑Bim, ↑Bad, ↑Bak and ↑Bax, ↓NF-κB, ↓AP-1, ↓BcL-xL, ↓surviving, ↓Bcl-2 | 0.5 mg/mL | [87] | ||
melanoma B16F10 cell lines | ┴tumor angiogenesis, epithelial-mesenchymal transition, and metastasis, ↓epithelial mesenchymal transition-related markers TWIST and ZEB1, ↓VEGF secretion, ↓VEGF receptor phosphorylation, ↓MMP expression, ↓HIF-1α protein level, ┴PI3K/Akt/m-TOR pathway | 100 µM | [88] |
Cancer Type | Animal Model | Dose of Cinnamaldehyde | Therapeutic Effect | Reference |
---|---|---|---|---|
Brain cancer | Mouse orthotopic xenograft model | 2′-hydroxycinnamaldehyde (50 mg/kg), temozolomide (30 mg/kg) | ↓growth of tumors | [39] |
Breast cancer | female Balb/c nude xenograft animal model | cinnamaldehyde (100 mg/kg) and FK866 (4 mg/kg) | ↓tumor weighed, ↓visfatin-induced luminescence signal in tumor, ↓proliferating cell nuclear antigen | [46] |
Colon cancer | Nrf2+/+ mice | — | ↓AOM/DSS-induced inflammatory colon carcinogenesis | [54] |
BALB/c/nu/nu nude mice | cinnamaldehyde (50 mg/kg) with oxaliplatin (7.5 mg/kg) | ┴anti-tumor, ↓Bcl-2 expression, ↑Bax expression, ↓β-catenin levels | [60] | |
Ehrlich ascites carcinoma | Ehrlich ascites carcinoma tumors in mice | 50 mg/kg | ↓number of tumor cells by 45 percent, ↓cell viability by 53 percent, ↓proliferation rate by 53 percent, ┴cell cycle at G0/G1 phase, ↑splenic T helper cells (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells | [16] |
Liver cancer | BALB/c mice model | 10 mg/kg | ┴tumor growth, ┴angiogenesis, ↓HIF-1a protein, ↓VEGF | [83] |
thioacetamide-induced hepatocellular carcinoma in male Sprague Dawley rats | 70 mg/kg | ┴Wnt/β-catenin pathway, ↓β-catenin, ↓Wnt-3a, ↓MMP-9, ↓cyclin D, ↓VEGF | [68] | |
Lung cancer | A549 xenograft BALB/c nude mouse model | 20 mg/kg | ↓tumor growth | [70] |
female ICR mice model | combined dose of berberine and cinnamaldehyde of 105 mg/kg (at a ratio of 20:1) | ↓susceptibility of to urethane-induced lung carcinogenesis, ↑AMPK, ↑mTOR, ↓AQP-1 and ↓NF-κB, ↓tumor growth | [71] | |
nude mice xenograft tumor model | 20 mg/kg | ┴tumor formation | [72] | |
Osteosarcoma cancer | Balb/c-nude female mouse xenograft model | 100 mg/kg | ↓growth of osteosarcoma, ↑Bad gene expression, ↓Bcl-2 and PARP genes expression, ↓Wnt/β-catenin and PI3K/Akt, signaling | [78] |
Ovarian cancer | SCID mice model | 0.3 mg/gm | ┴VEGF, ┴blood vessel formation, ┴tumor growth | [79] |
female Wistar rat model | 50 mg/kg | ↓estrogen, ↓luteinizing hormone, ↓follicle stimulating hormone, ↑progesterone | [81] | |
Skin cancer | human A375 melanoma SCID mice xenograft model | 120 mg/kg, daily oral dose for 10 days | ↓proliferation, ↓tumor growth | [85] |
C57BL/6 melanoma mice model | 0.5 mg/mL | ↓VEGF-α, ↓EGF, ↓FGF, ↓TGF-β, ↓HIF-1, ↓Cox-2, ↓tumor growth | [86] | |
melanoma C57BL/6 mice model | 0.5 mg/mL | ┴tumor formation, ↑Bim, ↑Bad, ↑Bak and ↑Bax, ↓NF-κB, ↓AP-1, ↓BcL-xL, ↓surviving, ↓Bcl-2 | [87] | |
melanoma C57BL/6 mice models | 30 mg/kg | ┴tumor angiogenesis, epithelial-mesenchymal transition, and metastasis, ↓epithelial mesenchymal transition-related markers TWIST and ZEB1, ↓VEGF secretion, ↓VEGF receptor phosphorylation, ↓MMP expression, ↓HIF-1α protein level, ┴PI3K/Akt/m-TOR pathway | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Banerjee, S. Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant. Physiologia 2023, 3, 173-207. https://doi.org/10.3390/physiologia3020013
Banerjee S, Banerjee S. Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant. Physiologia. 2023; 3(2):173-207. https://doi.org/10.3390/physiologia3020013
Chicago/Turabian StyleBanerjee, Sabyasachi, and Subhasis Banerjee. 2023. "Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant" Physiologia 3, no. 2: 173-207. https://doi.org/10.3390/physiologia3020013
APA StyleBanerjee, S., & Banerjee, S. (2023). Anticancer Potential and Molecular Mechanisms of Cinnamaldehyde and Its Congeners Present in the Cinnamon Plant. Physiologia, 3(2), 173-207. https://doi.org/10.3390/physiologia3020013