The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review
Abstract
:1. Introduction
1.1. Rationale
1.2. Objectives
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources, Search and Selection of Sources of Evidence
2.4. Data Charting Process, Data Items and Synthesis of Results
2.5. Risk of Bias
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.3. Risk of Bias Within Studies
3.4. Results of Individual Studies
4. Discussion
4.1. Summary of Evidence
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boersma, J.G.; van der Veen, M.H.; Lagerweij, M.D.; Bokhout, B.; Prahl-Andersen, B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: Influencing factors. Caries Res. 2005, 39, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Mattousch, T.J.; van der Veen, M.H.; Zentner, A. Caries lesions after orthodontic treatment followed by quantitative light-induced fluorescence: A 2-year follow-up. Eur. J. Orthod. 2007, 29, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Salerno, C.; Grazia Cagetti, M.; Cirio, S.; Esteves-Oliveira, M.; Wierichs, R.J.; Kloukos, D.; Campus, G. Distribution of initial caries lesions in relation to fixed orthodontic therapy. A systematic review and meta-analysis. Eur. J. Orthod. 2024, 46, cjae008. [Google Scholar] [CrossRef] [PubMed]
- Simmer, J.P.; Hardy, N.C.; Chinoy, A.F.; Bartlett, J.D.; Hu, J.C. How fluoride protects dental enamel from demineralization. J. Int. Soc. Prev. Commun. 2020, 10, 134. [Google Scholar] [CrossRef]
- Song, H.; Cai, M.; Fu, Z.; Zou, Z. Mineralization pathways of amorphous calcium phosphate in the presence of fluoride. Cryst. Growth Des. 2023, 23, 7150–7158. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, L.; Guo, J.; Chuan, A.; Tong, J.; Ban, J.; Tian, T.; Jiang, W.; Wang, S. Application of fluoride disturbs plaque microecology and promotes remineralization of enamel initial caries. J. Oral. Microbiol. 2022, 14, 2105022. [Google Scholar] [CrossRef]
- Heintze, S.D.; Jost-Brinkmann, P.G.; Finke, C.; Miethke, R.R. Oral Health for the Orthodontic Patient; Quintessence: Berlin, Germany, 1999. [Google Scholar]
- Marinho, V.C.; Chong, L.Y.; Worthington, H.V.; Walsh, T. Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2016, 7, CD002284. [Google Scholar]
- van der Kaaij, N.C.; van der Veen, M.H.; van der Kaaij, M.A.; ten Cate, J.M. A prospective, randomized placebo-controlled clinical trial on the effects of a fluoride rinse on white spot lesion development and bleeding in orthodontic patients. Eur. J. Oral Sci. 2015, 123, 186–193. [Google Scholar] [CrossRef]
- Ravi Kiran, K.R.; Sabrish, S.; Mathew, S.; Shivamurthy, P.G.; Sagarkar, R. Effectiveness of amine fluoride mouthwash in preventing white spot lesions during fixed orthodontic therapy—A randomized control trial. Indian J. Dent. Res. 2023, 34, 261–265. [Google Scholar] [CrossRef]
- Jha, A.K.; Mahuli, A.V.; Verma, S.K.; Kumar, S.; Prakash, O.; Ekram, S.; Mathur, A.; Mehta, V. Effectiveness of fluoride mouthrinse in prevention of demineralization during fixed orthodontic treatment: A systematic review and meta-analysis. J. Orthod. Sci. 2024, 13, 22. [Google Scholar] [CrossRef]
- Enerbäck, H.; Lingström, P.; Möller, M.; Nylén, C.; Ödman Bresin, C.; Östman Ros, I.; Westerlund, A. Effect of a mouth rinse and a high-fluoride toothpaste on caries incidence in orthodontic patients: A randomized controlled trial. Am. J. Othod. Dentofac. Orthop. 2022, 162, 6–15.e3. [Google Scholar] [CrossRef] [PubMed]
- Geiger, A.M.; Gorelick, L.; Gwinnett, A.J.; Benson, B.J. Reducing white spot lesions in orthodontic populations with fluoride rinsing. Am. J. Orthod. Dentofac. Orthop. 1992, 101, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Bourauel, C. Intraoral aging of orthodontic materials: The picture we miss and its clinical relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Athanasiou, A.E. In vivo aging of orthodontic alloys: Implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 2002, 72, 222–237. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Peters, M.D.; Marnie, C.; Colquhoun, H.; Garritty, C.M.; Hempel, S.; Horsley, T.; Langlois, E.V.; Lillie, E.; O’Brien, K.K.; Tunçalp, Ö; et al. Scoping reviews: Reinforcing and advancing the methodology and application. Syst. Rev. 2021, 10, 263. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomized Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Farrag, O.G.A.E.G.; Shamaa, N.E.A.; Elgameay, W.E.; Bayoumi, D.A. Clinical effect of chlorhexidine and sodium fluoride oncorrosion behavior and surface topography of nitinol orthodontic archwires. BMC Oral Health 2024, 24, 564. [Google Scholar] [CrossRef]
- Khanloghi, M.; Sheikhzadeh, S.; Khafri, S.; Mirzaie, M. Effect of Different Forms of Fluoride Application on Surface Roughness of Rhodium-Coated NiTi Orthodontic Wires: A Clinical Trial. Front. Dent. 2023, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, C.M.; Faltin, K., Jr.; Maeda, F.A.; Ortolani, C.L.F.; Guaré, R.O.; Cardoso, C.A.B.; Costa, A.L.F. In vivo assessment of the corrosion of nickel-titanium orthodontic archwires by using scanning electron microscopy and atomic force microscopy. Microsc. Res. Technol. 2020, 83, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Fateh-Zonouzi, M.; Kamel, R.M.; Sheikhzadeh, S.; Arash, V.; Khafri, S. The Effect of Different Methods of Fluoride Administration at Different Concentrations on the Load-Deflection Properties of Rhodium-Coated NiTi Archwires. J. Babol Univ. Med. Sci. 2022, 24, 25–32. [Google Scholar]
- Chitra, P.; Prashantha, G.S.; Rao, A. Long-term evaluation of metal ion release in orthodontic patients using fluoridated oral hygiene agents: An in vivo study. J. World Fed. Orthod. 2019, 8, 107–111. [Google Scholar] [CrossRef]
- Chitra, P.; Prashantha, G.S.; Rao, A. Effect of fluoride agents on surface characteristics of NiTi wires: An ex vivo investigation. J. Oral Biol. Craniofac. Res. 2020, 10, 435–440. [Google Scholar] [CrossRef]
- Rajendran, A.; Sundareswaran, S.; Peediyekkal, L.V.; Santhakumar, P.; Sathyanadhan, S. Effect of oral environment and prescribed fluoride mouthwashes on different types of TMA wires—An in-vivo study. J. Orthod. Sci. 2019, 8, 8. [Google Scholar]
- Graber, T.M.; Eliades, T.; Athanasiou, A.E. Risk Management in Orthodontics: Experts’ Guide to Malpractice; Quintessence Publishing Co.: Chicago, IL, USA, 2004. [Google Scholar]
- Al Makhmari, S.A.; Kaklamanos, E.G.; Athanasiou, A.E. Short-term and long-term effectiveness of powered toothbrushes in promoting periodontal health during orthodontic treatment: A systematic review and meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 753–766.e7. [Google Scholar] [CrossRef]
- Mariotti, A.J.; Burrell, K.H. Mouthrinses and Dentifrices, 5th ed.; American Dental Association and Physician’s Desk Reference, Inc.: Chicago, IL, USA, 2009. [Google Scholar]
- Morell, P.; Hernando, I.; Fiszman, S.M. Understanding the relevance of in-mouth food processing: A review of in vitro techniques. Trends Food Sci. Technol. 2013, 35, 18–31. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Ten Cate, J.M. Physicochemical aspects of fluoride-enamel interactions. In Fluoride in Dentistry; Ekstrand, J., Fejerskov, O., Silverstone, L.M., Eds.; 1996; pp. 125–149. [Google Scholar]
- Sufarnap, E.; Harahap, K.I.; Adiana, I.D.; Lim, D.; Lim, C.; Christy, C. Corrosion of copper nickel titanium archwire in chlorhexidine, sodium fluoride, and chitosan mouthwashes. F1000Research 2024, 12, 159. [Google Scholar] [CrossRef]
- Sukumar, B.; Raghu Ram, R.; Sunil, G.; Ranganayakulu, I.; Anand Viswanadh, K. Effect of Sodium Fluoride Mouthwash and Ozone-Infused Oil Pulling Solution With Coconut Oil on Mechanical Properties and Surface Characterization of Copper-Nickel-Titanium Orthodontic Archwires. Cureus 2023, 15, e40207. [Google Scholar]
- Pastor, F.; Rodriguez, J.C.; Barrera, J.M.; García-Menocal, J.A.D.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of fluoride content of mouthwashes on the metallic ion release in different orthodontic archwires. Int. J. Environ. Res. Public Health 2023, 20, 2780. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments. Dent. Mater. 2007, 23, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Zibar Belasic, T.; Pejova, B.; Curkovic, H.O.; Kamenar, E.; Cetenovic, B.; Spalj, S. Influence of intraoral application of antiseptics and fluorides during orthodontic treatment on corrosion and mechanical characteristics of nickel-titanium alloy in orthodontic appliances. Angle Orthod. 2021, 91, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Bucki, R.; Łysik, D.; Tokajuk, G.; Dąbrowski, J. The role of oral cavity biofilm on metallic biomaterial surface destruction—Corrosion and friction aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef]
- Ewers, G.J.; Greener, E.H. The electrochemical activity of the oral cavity—A new approach. J. Oral Rehabil. 1985, 12, 469–476. [Google Scholar] [CrossRef]
- Wasim, M.; Inamuddin, I.; Asiri, A.M.; Shoaib, S.; Mubarak, N.M. Factors influencing corrosion of metal pipes in soils. Environ. Chem. Lett. 2018, 16, 861–879. [Google Scholar] [CrossRef]
- Lucchetti, M.C.; Fratto, G.; Valeriani, F.; De Vittori, E.; Giampaoli, S.; Papetti, P.; Romano Spica, V.; Manzon, L. Cobalt-chromium alloys in dentistry: An evaluation of metal ion release. J. Prosthet. Dent. 2015, 114, 602–608. [Google Scholar] [CrossRef]
- Cacciafesta, V.; Sfondrini, M.F.; Stifanelli, P.; Scribante, A.; Klersy, C. Effect of chlorhexidine application on shear bond strength of brackets bonded with a resin-modified glass ionomer. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 273–276. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Damon, P.L.; Bishara, S.E.; Olsen, M.E.; Jakobsen, J.R. Bond strength following the application of chlorhexidine on etched enamel. Angle Orthod. 1997, 67, 169–172. [Google Scholar]
- Walker, M.P.; Ries, D.; Kula, K.; Ellis, M.; Fricke, B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod. 2007, 77, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Katić, V.; Mandić, V.; Ježek, D.; Baršić, G.; Špalj, S. Influence of various fluoride agents on working properties and surface characteristics of uncoated, rhodium-coated, and nitrified nickel-titanium orthodontic wires. Acta Odontol. Scand. 2015, 73, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Schiff, N.; Dalard, F.; Lissac, M.; Morgon, L.; Grosgogeat, B. Corrosion resistance of three orthodontic brackets: A comparative study of three fluoride mouthwashes. Eur. J. Orthod. 2005, 27, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Danaei, S.M.; Safavi, A.; Roeinpeikar, S.M.M.; Oshagh, M.; Iranpour, S.; Omidekhoda, M. Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 730–734. [Google Scholar] [CrossRef]
- Nik, T.H.; Ghadirian, H.; Hooshmand, T.; Kharazifard, M.J.; Nasiri, M.; Mahd, M.J. Effect of 0.05% Sodium Fluoride Mouthwash on Surface Roughness and Friction between Ceramic Brackets and Rhodium-Coated and Uncoated Stainless Steel Wires. Front. Dent. 2019, 16, 121–129. [Google Scholar]
- Geramy, A.; Hooshmand, T.; Etezadi, T. Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires. J. Dent. 2017, 14, 254–258. [Google Scholar]
- Rincic Mlinaric, M.; Karlovic, S.; Ciganj, Z.; Acev, D.P.; Pavlic, A.; Spalj, S. Oral antiseptics and nickel-titanium alloys: Mechanical and chemical effects of interaction. Odontology 2019, 107, 150–157. [Google Scholar] [CrossRef]
- Schmalz, G.; Garhammer, P. Biological interactions of dental cast alloys with oral tissues. Dent. Mater. 2002, 18, 396–406. [Google Scholar] [CrossRef]
- Bodén, K.; Schenker, M.; Lidén, C. Oral cytotoxicity of orthodontic metallic materials: An experimental study. Eur. J. Orthod. 2016, 38, 400–406. [Google Scholar]
- Singh, N.; Sharma, S.; Saimbi, C.S. Allergic reactions to nickel in orthodontics: Implications and management. J. Clin. Orthod. 2021, 55, 153–158. [Google Scholar]
- Schiff, N.; Boinet, M.; Morgon, L.; Lissac, M.; Dalard, F.; Grosgogeat, B. Galvanic corrosion between orthodontic wires and brackets in fluoride mouthwashes. Eur. J. Orthod. 2006, 28, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontic wires. Biomaterials 2004, 25, 4535–4542. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.T.; Ding, S.J.; Wang, C.K.; He, H.; Chou, M.Y.; Huang, T.H. Comparison of frictional resistance after immersion of metal brackets and orthodontic wires in a fluoride-containing prophylactic agent. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 568.e1–568.e9. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.T.; Lenza, M.A.; Gosch, C.S.; Costa, I.; Ribeiro-Dias, F. In vitro evaluation of corrosion and cytotoxicity of orthodontic brackets. J. Dent. Res. 2007, 86, 441–445. [Google Scholar] [CrossRef]
- Eliades, T.; Brantley, W. (Eds.) Orthodontic Applications of Biomaterials: A Clinical Guide; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 97–104. [Google Scholar]
- Hammad, S.M.; Al-Wakeel, E.E.; Gad, E.-S. Mechanical properties and surface characterization of translucent composite wirefollowing topical fluoride treatment. Angle Orthod. 2012, 82, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.; Chandra, P.K.; Kamat, N. Effect of fluoride mouth rinses on various orthodontic archwire alloys tested by modified bending test: An in vitro study. Indian J. Dent. Res. 2012, 23, 433–434. [Google Scholar] [CrossRef]
- Rossouw, E.P. Friction: An overview. Semin Orthod. 2003, 9, 218–222. [Google Scholar] [CrossRef]
- Jansen, W.; Oliveira, D. The role of friction in orthodontics. Dent. Press J. Orthod. 2012, 17, 170–177. [Google Scholar]
- Vishwanathaiah, S.; Maganur, P.C.; Syed, A.A.; Kakti, A.; Hussain Jaafari, A.H.; Albar, D.H.; Renugalakshmi, A.; Jeevanandan, G.; Khurshid, Z.; Ali Baeshen, H.; et al. Effectiveness of Silver Diamine Fluoride (SDF) in Arresting Coronal Dental Caries in Children and Adolescents: A Systematic Review. J. Clin. Pediatr. Dent. 2024, 48, 27–40. [Google Scholar]
- Cacciafesta, V.; Sfondrini, M.F.; Calvi, D.; Scribante, A. Effect of Fluoride Application on Shear Bond Strength of Brackets Bonded with a Resin-Modified Glass-Ionomer. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 580–583. [Google Scholar] [CrossRef]
- Inquimbert, C.; Bourgeois, D.; Bravo, M.; Viennot, S.; Dussart, C.; Carrouel, F. The Oral Bacterial Microbiome of Interdental Surfaces in Adolescents According to Carious Risk. Microorganisms 2019, 7, 319. [Google Scholar] [CrossRef] [PubMed]
Study | Participant & Intervention Characteristics | Study Methods & Outcomes |
---|---|---|
Farrag et al. [21] 2024—RCT | 30; Age: 18–30 y; Study duration: 1 m CG: 10; F toothpaste [3/d] TG: 10; as in CG plus 0.2% NaF [proprietary formulation; 10 mL; 2/d] | NiTi archwires [0.016″ × 0.022″; American Orthodontics (Sheboygan, WI, USA)] Roughness: Ra: NaF > control [SS] [SEM] |
Khanloghi et al. [22] 2023—RCT | 10; Age: 15–20 y; Study duration: 6 w CG: 5; F− toothpaste TG: 5; as in CG plus & 0.05% F [Oral B daily; 15 mL; 1/d] | NiTi archwires–rhodium-coated [0.016″; GAC International] Roughness: Sa, Sq, Sdq increased in NAF [SS]; Sdr & Sz [ND] [AFM] |
Ogawa et al. [23] 2020—RCT | 10 recruited [5 analyzed in a cross-over trial]; Age: 18–25 y; Study duration: 30 d for each phase [with 10 d washout period between] PG: 5; F toothpaste [3/d] and placebo TG1: 5; as in CG but NaF 1.1% pH 7 [proprietary formulation; 10 mL; 1/d] TG2: 5; as in CG but APF 1.1% pH 5.1 [proprietary formulation; 10 mL; 1/d] | NiTi archwires [0.016″ Nitinol, 3 M Unitek & NiTi Memory Wire, American Orthodontics] Roughness: RA and RMS increased in APF treated Nitinol wires [SS]; AO wires [ND] [SEM] Roughness [qualitative assessment]: PG < NaF < APF [AFM] |
Fateh-Zonouzi et al. [24] 2022—RCT | 20; Age: 15–25 y; Study duration: 6 w CG: 10; F toothpaste [2/d] TG: 10; as in CG plus 0.2% NaF [Oral B; 15 mL; 30 s; 1/d] | NiTi archwires–rhodium-coated [0.016″; GAC International] Mean yield strength: NaF > control [SS] Stiffness: [ND]; Unloading force: [ND] |
Chitra et al. [25] 2019—CCT | 60; Age: N/A; Study duration: 6 m CG: 30; non-F toothpaste TG: 30; F toothpaste & 225 ppm F−mouthwash (Colgate Plax, 225 ppm fluoride; Colgate Palmolive Co. (New York City, NY, USA)) [2/d] | S. Steel brackets [Mini Twin; Ormco, Glendora, CA, USA] & NiTi archwires [[0.014″ NiTi, 0.016″ NiTi, 0.016″ × 0.022″ NiTi Tru-Arch Align NiTi; Ormco] Ion release in CGF Ni (1 m): [SS]; Ni (1 w, 6 m), Cr (1 w, 1 m, 6 m), Mn (1 w, 1 m, 6 m), Ti (1 w, 1 m, 6 m): [ND] |
Chitra et al. [26] 2020—CCT | 60; Age: N/A; Study duration: 6 m CG: 30; non-F toothpaste TG: 30; F toothpaste & 225 ppm F mouthwash (Colgate Plax, 225 ppm fluoride, Colgate Palmolive Co., Mumbai, India) [2/d] | S. Steel brackets [Teeth #11 & #15; Ormco Corporation, Glendora, CA, USA] & NiTi archwires [0.014″ NiTi, 0.016″ NiTi, 0.016″ × 0.022″ NiTi Tru-Arch Align NiTi; Ormco] Surface characteristics [qualitative assessment]: surface degradation [F] > CG Metal ion release: Ni percentage [F] < CG for all wires |
Rajendran et al. [27] 2019—CCT | 96; Age: N/A; Study duration: 4 w CG: 16 [for each type of TMA wire]; non-F− toothpaste TG: 16 [for each type of TMA wire]; 904 ppm F− & 3% KNO3 mouthwash (SENQUEL-AD mouthwash, Dr. Reddy’s Laboratory (Hyderabad, India)) [10 mL; 3 min; 3/d] | TMA wires [0.017″ × 0.025″: 1. Standard TMA (TMA); GAC, Bohemia, NY, USA; 2. Ion-implanted, low-friction TMA (LF); Ormco, Glendora, CA, USA, and 3. Colored, Honey Dew TMA (HD)] Roughness: Sa, Sz: [904 ppm F] > CG in all 3 wires; Load-deflection rate: [904 ppm F] > CG in LF and HD. Ultimate Tensile strength: [904 ppm F] > CG in all 3 wires. Modulus of elasticity: [904 ppm F] > CG in all 3 wires |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrygiannakis, M.A.; Gkinosati, A.A.; Kalfas, S.; Kaklamanos, E.G. The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review. Hygiene 2025, 5, 23. https://doi.org/10.3390/hygiene5020023
Makrygiannakis MA, Gkinosati AA, Kalfas S, Kaklamanos EG. The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review. Hygiene. 2025; 5(2):23. https://doi.org/10.3390/hygiene5020023
Chicago/Turabian StyleMakrygiannakis, Miltiadis A., Angeliki Anna Gkinosati, Sotirios Kalfas, and Eleftherios G. Kaklamanos. 2025. "The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review" Hygiene 5, no. 2: 23. https://doi.org/10.3390/hygiene5020023
APA StyleMakrygiannakis, M. A., Gkinosati, A. A., Kalfas, S., & Kaklamanos, E. G. (2025). The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review. Hygiene, 5(2), 23. https://doi.org/10.3390/hygiene5020023