Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model
Abstract
:1. Introduction
2. Model Description
2.1. Cell Growth
2.2. Cell Lysis
2.3. Cell Deactivation
2.4. Substrate Compounds Dynamics
Parameter | Description | Value(s) | Unit | Reference |
---|---|---|---|---|
Effective diffusion coefficient of the chemical compounds in the biofilm matrix | 9 × 10−11 and 9 × 10−10 | m2 h−1 | Calibrated ourselves through numerous simulations to produce conditions in which biofilm development would affect chemical concentrations for given parameters. | |
Effective diffusion coefficient of the chemical compounds in liquid | 9 × 10−10 | m2 h−1 | As above. | |
Maximum uptake rate of oxygen | 4.5 × 10−10 | mmol h−1 | Order of magnitude obtained from oxidation rates of C. jejuni [75]. | |
Monod coefficient for oxygen uptake rate | 3 × 10−3 | mmol L−1 | Based on saturation constant estimates for C. jejuni in regards to changes in dissolved oxygen concentrations [75]. | |
Maximum uptake rate of the carbon source | 4.5 × 10−9 | mmol h−1 | We assumed it to be 10 times larger than maximum oxygen uptake, due to higher need to utilize the carbon source. | |
Monod coefficient for growth limiting compound uptake | 0.03 | mmol L−1 | Assumed 10 times larger than due to higher need to utilize the carbon source. | |
Maximum division rate of C. jejuni | 0.8 | h−1 | Maximum growth rate of C. jejuni 104 at 42 °C, in BHI medium [76]. | |
Monod coefficient for growth | 0.03 | mmol L−1 | Assumed to be equal to , due to the growth-limiting nature of and previously found direct proportionality of growth rate and substrate uptake for E. coli [77]. | |
Deactivation rate | 0.3 | h−1 | Approximate death rate of C. jejuni in water at 37 °C in stationary conditions [78]. | |
Minimum uptake rate of | 1 × 10−9 | mmol h−1 | Assumed to be lower but have the same order of magnitude as the maximum uptake rate of the carbon source . | |
Lysis coefficient for carbon source concentration | 0.02 | L mmol−1 h−1 | Approximated to produce a slightly higher lysis rate value in aerobic conditions than the maximum growth rate (~0.85 h−1), and a slightly lower lysis rate value in microaerobic conditions (~0.69 h−1) for mmol h−1. | |
Lysis coefficient for oxygen concentration | 2.3 | L mmol−1 h−1 | As above. |
3. Results and Discussion
3.1. Behaviour of a Single Cell for Given Chemical Concentrations
3.2. Collective Behaviour–Biofilm Formation
3.2.1. Effect of Supplied Oxygen and Nutrient Concentrations
3.2.2. Effect of the Diffusion Coefficient in the Biofilm
4. Conclusions
- The analysis of the behaviour of one cell predicts the existence of the optimal nutrient concentration for which the effective growth rate is maximized and thus it increases the survival potential of the population in higher oxygen conditions. In turn, this suggests that lower nutrient media may increase the tolerance of C. jejuni to higher oxygen conditions.
- The development of a biofilm, through decreasing local compound concentrations within its boundaries, may push the population towards the regime in which the effective growth rate is positive.
- The model predicts that the survival probability of individual cells placed on a surface decreases when nutrient or oxygen levels are raised. The expected number of live cells in situations when the cell is successful in establishing a colony, however, tend to be lower in the lower nutrient conditions. There appears to be a trade-off, where on the one hand, increasing nutrient conditions may be detrimental to individual cells, but at the same time it may bring benefit to the whole population.
- Our results suggest that the lower biofilm formation observed in aerobic conditions in Mueller Hinton Broth compared to cultivation in microaerobic conditions may be due to the lower surface invasion probability of individual cells, and that those cells which manage to invade may generate microcolonies of an equivalent size in aerobic and microaerobic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Algorithm for Vital Cell Dynamics
Appendix B. Redistribution of Biofilm Mass after Growth Events
References
- Rumbaugh, K.P.; Sauer, K. Biofilm Dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.C. Planktonic versus Sessile Life of Prokaryotes. In The Prokaryotes: Prokaryotic Communities and Ecophysiology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 191–201. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.E.; O’toole, G.A. Microbial Biofilms: From Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial Biofilms: From the Natural Environment to Infectious Diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Lewenza, S. Extracellular DNA-Induced Antimicrobial Peptide Resistance Mechanisms in Pseudomonas Aeruginosa. Front. Microbiol. 2013, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Dincer, S.; Uslu, F.M.; Delik, A. Antibiotic Resistance in Biofilm. In Bacterial Biofilms; Dincer, S., Özdenefe, M.S., Arkut, A., Eds.; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-78985-900-3. [Google Scholar]
- Lewis, K. Multidrug Tolerance of Biofilms and Persister Cells BT—Bacterial Biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 107–131. ISBN 978-3-540-75418-3. [Google Scholar]
- Wang, H.; Li, Y.; Yang, H.; Lin, K.A.; Shao, T.; Hope, J. Biofilms Controlling in Industrial Cooling Water Systems: A Mini-Review of Strategies and Best Practices. ACS Appl. Bio Mater. 2023, 6, 3213–3220. [Google Scholar] [CrossRef] [PubMed]
- Carrel, M.; Morales, V.L.; Beltran, M.A.; Derlon, N.; Kaufmann, R.; Morgenroth, E.; Holzner, M. Biofilms in 3D Porous Media: Delineating the Influence of the Pore Network Geometry, Flow and Mass Transfer on Biofilm Development. Water Res. 2018, 134, 280–291. [Google Scholar] [CrossRef]
- Percival, S.; Knottenbelt, D.; Cochrane, C. (Eds.) Biofilms and Veterinary Medicine; Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6, ISBN 978-3-642-21288-8. [Google Scholar]
- Phalak, P.; Chen, J.; Carlson, R.P.; Henson, M.A. Metabolic Modeling of a Chronic Wound Biofilm Consortium Predicts Spatial Partitioning of Bacterial Species. BMC Syst. Biol. 2016, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.; Simões, L.C.; Vieira, M.J. A Review of Current and Emergent Biofilm Control Strategies. LWT—Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef]
- Dzianach, P.A.; Dykes, G.A.; Strachan, N.J.C.; Forbes, K.J.; Pérez-Reche, F.J. Challenges of Biofilm Control and Utilization: Lessons from Mathematical Modelling. J. R. Soc. Interface 2019, 16, 20190042. [Google Scholar] [CrossRef]
- Dzianach, P.A.; Pérez-Reche, F.J.; Strachan, N.J.C.; Forbes, K.J.; Dykes, G.A. The Use of Interdisciplinary Approaches to Understand the Biology of Campylobacter jejuni. Microorganisms 2022, 10, 2498. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J. Stochastic Modelling for Quantitative Description of Heterogeneous Biological Systems. Nat. Rev. Genet. 2009, 10, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Einarsson, B.; Carpio, A. Biofilm Growth on Rugose Surfaces. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2012, 86, 061914. [Google Scholar] [CrossRef] [PubMed]
- Lardon, L.A.; Merkey, B.V.; Martins, S.; Dötsch, A.; Picioreanu, C.; Kreft, J.U.; Smets, B.F. IDynoMiCS: Next-Generation Individual-Based Modelling of Biofilms. Environ. Microbiol. 2011, 13, 2416–2434. [Google Scholar] [CrossRef] [PubMed]
- Tack, I.L.M.M.; Nimmegeers, P.; Akkermans, S.; Hashem, I.; Van Impe, J.F.M. Simulation of Escherichia coli Dynamics in Biofilms and Submerged Colonies with an Individual-Based Model Including Metabolic Network Information. Front. Microbiol. 2017, 8, 2509. [Google Scholar] [CrossRef] [PubMed]
- Chanbless, J.D.; Hunt, S.M.; Stewart, P.S. A Three-Dimensional Computer Model of Four Hypothetical Mechanisms Protecting Biofilms from Antimicrobials. Appl. Environ. Microbiol. 2006, 72, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.B.; Picioreanu, C.; Van Loosdrecht, M.C.M. A Framework for Multidimensional Modelling of Activity and Structure of Multispecies Biofilms. Environ. Microbiol. 2005, 7, 1085–1103. [Google Scholar] [CrossRef]
- Haas, C.N. Microbial Dose Response Modeling: Past, Present, and Future. Environ. Sci. Technol. 2015, 49, 1245–1259. [Google Scholar] [CrossRef]
- Perez-Reche, F.J. Impact of Heterogeneity on Infection Probability: Insights from Single-Hit Dose-Response Models. arXiv 2024, arXiv:2404.00822. [Google Scholar]
- Chen, L.; Geys, H.; Cawthraw, S.; Havelaar, A.; Teunis, P. Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens. Risk Anal. 2006, 26, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Nagelkerke, N.J.D.; Haas, C.N. Dose Response Models for Infectious Gastroenteritis. Risk Anal. 1999, 19, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Ogden, I.D.; Strachan, N.J.C. Hierarchical Dose Response of E. coli O157:H7 from Human Outbreaks Incorporating Heterogeneity in Exposure. Epidemiol. Infect. 2008, 136, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Kasuga, F.; Fazil, A.; Ogden, I.D.; Rotariu, O.; Strachan, N.J.C. Dose–Response Modeling of Salmonella Using Outbreak Data. Int. J. Food Microbiol. 2010, 144, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.; Marinović, A.B.; Tribble, D.R.; Porter, C.K.; Swart, A. Acute Illness from Campylobacter jejuni May Require High Doses While Infection Occurs at Low Doses. Epidemics 2018, 24, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 25 June 2024).
- O’Brien, S.J. The Consequences of Campylobacter Infection. Curr. Opin. Gastroenterol. 2017, 33, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.; DiRita, V. Growth and Laboratory Maintenance of Campylobacter jejuni. Curr. Protoc. Microbiol. 2008, 10, 8A.1.1–8A.1.7. [Google Scholar] [CrossRef] [PubMed]
- Hofreuter, D. Defining the Metabolic Requirements for the Growth and Colonization Apacity of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2014, 4, 137. [Google Scholar] [CrossRef] [PubMed]
- Sulaeman, S.; Hernould, M.; Schaumann, A.; Coquet, L.; Bolla, J.-M.; Dé, E.; Tresse, O. Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions. PLoS ONE 2012, 7, e46402. [Google Scholar] [CrossRef]
- Wagenaar, J.A.; Newell, D.G.; Kalupahana, R.S.; Mughini-Gras, L. Campylobacter: Animal Reservoirs, Human Infections, and Options for Control. In Zoonoses: Infections Affecting Humans and Animals; Springer: Dordrecht, The Netherlands, 2023; pp. 267–293. [Google Scholar] [CrossRef]
- Mughini Gras, L.; Smid, J.H.; Wagenaar, J.A.; de Boer, A.G.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Busani, L.; van Pelt, W. Risk Factors for Campylobacteriosis of Chicken, Ruminant, and Environmental Origin: A Combined Case-Control and Source Attribution Analysis. PLoS ONE 2012, 7, e42599. [Google Scholar] [CrossRef]
- Cody, A.J.; Maiden, M.C.J.; Strachan, N.J.C.; McCarthy, N.D. A Systematic Review of Source Attribution of Human Campylobacteriosis Using Multilocus Sequence Typing. Eurosurveillance 2019, 24, 1800696. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Reche, F.J.; Rotariu, O.; Lopes, B.S.; Forbes, K.J.; Strachan, N.J.C. Mining Whole Genome Sequence Data to Efficiently Attribute Individuals to Source Populations. Sci. Rep. 2020, 10, 12124. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Roman, D.J. Prevalence and Survival of Campylobacter jejuni in Unpasteurized Milk. Appl. Environ. Microbiol. 1982, 44, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Strachan, N.J.C.; Rotariu, O.; MacRae, M.; Sheppard, S.K.; Smith-Palmer, A.; Cowden, J.; Maiden, M.C.J.; Forbes, K.J. Operationalising Factors That Explain the Emergence of Infectious Diseases: A Case Study of the Human Campylobacteriosis Epidemic. PLoS ONE 2013, 8, e79331. [Google Scholar] [CrossRef] [PubMed]
- Mulder, A.C.; Franz, E.; de Rijk, S.; Versluis, M.A.J.; Coipan, C.; Buij, R.; Müskens, G.; Koene, M.; Pijnacker, R.; Duim, B.; et al. Tracing the Animal Sources of Surface Water Contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 2020, 187, 116421. [Google Scholar] [CrossRef]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and Cats: Reservoirs for Highly Diverse Campylobacter jejuni and a Potential Source of Human Exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Parsons, B.N.; Porter, C.J.; Ryvar, R.; Stavisky, J.; Williams, N.J.; Pinchbeck, G.L.; Birtles, R.J.; Christley, R.M.; German, A.J.; Radford, A.D.; et al. Prevalence of Campylobacter Spp. in a Cross-Sectional Study of Dogs Attending Veterinary Practices in the UK and Risk Indicators Associated with Shedding. Vet. J. 2010, 184, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Bronowski, C.; James, C.E.; Winstanley, C. Role of Environmental Survival in Transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 2014, 356, 8–19. [Google Scholar] [CrossRef]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. Association of Some Campylobacter jejuni with Pseudomonas aeruginosa Biofilms Increases Attachment under Conditions Mimicking Those in the Environment. PLoS ONE 2019, 14, e0215275. [Google Scholar] [CrossRef]
- Svensson, S.L.; Pryjma, M.; Gaynor, E.C. Flagella-Mediated Adhesion and Extracellular DNA Release Contribute to Biofilm Formation and Stress Tolerance of Campylobacter jejuni. PLoS ONE 2014, 9, e106063. [Google Scholar] [CrossRef]
- Yoon, K.S.; Burnette, C.N.; Oscar, T.P. Development of Predictive Models for the Survival of Campylobacter jejuni (ATCC 43051) on Cooked Chicken Breast Patties and in Broth as a Function of Temperature. J. Food Prot. 2004, 67, 64–70. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Skandamis, P.N.; Hänninen, M.-L. A Modified Weibull Model for Describing the Survival of Campylobacter jejuni in Minced Chicken Meat. Int. J. Food Microbiol. 2009, 136, 52–58. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, Z.; Smith, B.; Fazil, A.; Wu, J.; Ryan, S.D.; Munther, D. PH Dependent C. jejuni Thermal Inactivation Models and Application to Poultry Scalding. J. Food Eng. 2018, 223, 1–9. [Google Scholar] [CrossRef]
- Metris, A.; Reuter, M.; Gaskin, D.J.H.; Baranyi, J.; van Vliet, A.H.M. In Vivo and in Silico Determination of Essential Genes of Campylobacter jejuni. BMC Genom. 2011, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- de Vries, S.P.; Gupta, S.; Baig, A.; Wright, E.; Wedley, A.; Jensen, A.N.; Lora, L.L.; Humphrey, S.; Skovgård, H.; Macleod, K.; et al. Genome-Wide Fitness Analyses of the Foodborne Pathogen Campylobacter jejuni in In Vitro and In Vivo Models. Sci. Rep. 2017, 7, 1251. [Google Scholar] [CrossRef] [PubMed]
- Giallourou, N.; Medlock, G.L.; Bolick, D.T.; Medeiros, P.H.Q.S.; Ledwaba, S.E.; Kolling, G.L.; Tung, K.; Guerry, P.; Swann, J.R.; Guerrant, R.L. A Novel Mouse Model of Campylobacter jejuni Enteropathy and Diarrhea. PLoS Pathog. 2018, 14, e1007083. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Perlman, D.; Clements, M.L.; Levine, M.M.; Blaser, M.J. Human Volunteer Studies with Campylobacter jejuni. In Campylobacter jejuni: Current Status and Future Trends; Nachamkin, I., Blaser, M.J., Tompkins, L., Eds.; ASM Press: Washington, DC, USA, 1993; pp. 207–215. [Google Scholar]
- Bacon, D.J.; Alm, R.A.; Burr, D.H.; Hu, L.; Kopecko, D.J.; Ewing, C.P.; Trust, T.J.; Guerry, P. Involvement of a Plasmid in Virulence of Campylobacter jejuni 81-176. Infect. Immun. 2000, 68, 4384–4390. [Google Scholar] [CrossRef]
- Bereswill, S.; Fischer, A.; Plickert, R.; Haag, L.-M.; Otto, B.; Kühl, A.A.; Dashti, J.I.; Zautner, A.E.; Muñoz, M.; Loddenkemper, C.; et al. Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity. PLoS ONE 2011, 6, e20953. [Google Scholar] [CrossRef]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni. Curr. Microbiol. 2016, 73, 859–866. [Google Scholar] [CrossRef]
- Reeser, R.J.; Medler, R.T.; Billington, S.J.; Jost, B.H.; Joens, L.A. Characterization of Campylobacter jejuni Biofilms under Defined Growth Conditions. Appl. Environ. Microbiol. 2007, 73, 1908–1913. [Google Scholar] [CrossRef]
- Reuter, M.; Mallett, A.; Pearson, B.M.; Van Vliet, A.H.M. Biofilm Formation by Campylobacter jejuni Is Increased under Aerobic Conditions. Appl. Environ. Microbiol. 2010, 76, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Ma, L.; Nie, J.; Konkel, M.E.; Lu, X. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation. Appl. Environ. Microbiol. 2018, 84, e02068-17. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jacob, E.; Schochet, O.; Tenenbaum, A.; Cohen, I.; Czirok, A.; Vicsek, T. Generic Modelling of Cooperative Growth Patterns in Bacterial Colonies. Nature 1994, 368, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Hermanowicz, S.W. A Simple 2D Biofilm Model Yields a Variety of Morphological Features. Math. Biosci. 2001, 169, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wimpenny, J.W.T.; Colasanti, R. A Unifying Hypothesis for the Structure of Microbial Biofilms Based on Cellular Automaton Models. FEMS Microbiol. Ecol. 1997, 22, 1–16. [Google Scholar] [CrossRef]
- Picioreanu, C.; Van Loosdrecht, M.C.M.; Heijnen, J.J. Mathematical Modeling of Biofilm Structure with a Hybrid Differential-Discrete Cellular Automaton Approach. Biotechnol. Bioeng. 1998, 58, 101–116. [Google Scholar] [CrossRef]
- Eberl, H.J.; Parker, D.F.; Van Loosdrecht, M.C.M. A New Deterministic Spatio-Temporal Continuum Model for Biofilm Development. Comput. Math. Methods Med. 2000, 3, 161–175. [Google Scholar] [CrossRef]
- Sen, P.N. Time-Dependent Diffusion Coefficient as a Probe of Geometry. Concepts Magn. Reson. Part A Bridg. Educ. Res. 2004, 23, 1–21. [Google Scholar] [CrossRef]
- Xavier, J.B.; Picioreanu, C.; van Loosdrecht, M.C.M. A Modelling Study of the Activity and Structure of Biofilms in Biological Reactors. Biofilms 2004, 1, 377–391. [Google Scholar] [CrossRef]
- Pérez-Reche, F.J.; Taraskin, S.N.; Otten, W.; Viana, M.P.; Costa, L.D.F.; Gilligan, C.A. Prominent Effect of Soil Network Heterogeneity on Microbial Invasion. Phys. Rev. Lett. 2012, 109, 098102. [Google Scholar] [CrossRef]
- Pérez-Reche, F.J.; Ludlam, J.J.; Taraskin, S.N.; Gilligan, C.A. Synergy in Spreading Processes: From Exploitative to Explorative Foraging Strategies. Phys. Rev. Lett. 2011, 106, 218701. [Google Scholar] [CrossRef]
- Gilligan, C.A.; van den Bosch, F. Epidemiological Models for Invasion and Persistence of Pathogens. Annu. Rev. Phytopathol. 2008, 46, 385–418. [Google Scholar] [CrossRef]
- Guccione, E.; del Rocio Leon-Kempis, M.; Pearson, B.M.; Hitchin, E.; Mulholland, F.; van Diemen, P.M.; Stevens, M.P.; Kelly, D.J. Amino Acid-Dependent Growth of Campylobacter jejuni: Key Roles for Aspartase (AspA) under Microaerobic and Oxygen-Limited Conditions and Identification of AspB (Cj0762), Essential for Growth on Glutamate. Mol. Microbiol. 2008, 69, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.P.J. Kinetic Monte Carlo Algorithms. In An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions; Beiglböck, W., Ehlers, J., Hepp, K., Weidenmüller, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–71. ISBN 978-3-642-29488-4. [Google Scholar]
- Duffy, L.L.; Dykes, G.A. The Ability of Campylobacter jejuni Cells to Attach to Stainless Steel Does Not Change as They Become Nonculturable. Foodborne Pathog. Dis. 2009, 6, 631–634. [Google Scholar] [CrossRef]
- Stewart, P.S. Diffusion in Biofilms. J. Bacteriol. 2003, 185, 1485–1491. [Google Scholar] [CrossRef]
- Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed.; Oxford University Press: New York, NY, USA, 1985; ISBN 0-19-859641-3. [Google Scholar]
- Mohammed, K.A.S.; Miles, R.J.; Halablab, M.A. The Pattern and Kinetics of Substrate Metabolism of Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 2004, 39, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Hazeleger, W.C.; Wouters, J.A.; Rombouts, F.M.; Abee, T. Physiological Activity of Campylobacter jejuni Far below the Minimal Growth Temperature. Appl. Environ. Microbiol. 1998, 64, 3917–3922. [Google Scholar] [CrossRef]
- Schulze, K.L.; Lipe, R.S. Relationship between Substrate Concentration, Growth Rate, and Respiration Rate of Escherichia coli in Continuous Culture. Arch. Mikrobiol. 1964, 48, 1–20. [Google Scholar] [CrossRef]
- Rollins, D.M.; Colwell, R.R. Viable but Nonculturable Stage of Campylobacter jejuni and Its Role in Survival in the Natural Aquatic Environment. Appl. Environ. Microbiol. 1986, 52, 531–538. [Google Scholar] [CrossRef]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. The Influence of Dissolved Oxygen Level and Medium on Biofilm Formation by Campylobacter jejuni. Food Microbiol. 2017, 61, 120–125. [Google Scholar] [CrossRef]
- Pérez-Reche, F.J.; Taraskin, S.N.; da F. Costa, L.; Neri, F.M.; Gilligan, C.A. Complexity and Anisotropy in Host Morphology Make Populations Less Susceptible to Epidemic Outbreaks. J. R. Soc. Interface 2010, 7, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, P. On the Critical Behavior of the General Epidemic Process and Dynamical Percolation. Math. Biosci. 1983, 63, 157–172. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Sharo, A.G.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Vibrio Cholerae Biofilm Growth Program and Architecture Revealed by Single-Cell Live Imaging. Proc. Natl. Acad. Sci. USA 2016, 113, e5337–e5343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzianach, P.A.; Dykes, G.A.; Strachan, N.J.C.; Forbes, K.J.; Pérez-Reche, F.J. Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model. Hygiene 2024, 4, 326-345. https://doi.org/10.3390/hygiene4030026
Dzianach PA, Dykes GA, Strachan NJC, Forbes KJ, Pérez-Reche FJ. Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model. Hygiene. 2024; 4(3):326-345. https://doi.org/10.3390/hygiene4030026
Chicago/Turabian StyleDzianach, Paulina A., Gary A. Dykes, Norval J. C. Strachan, Ken J. Forbes, and Francisco J. Pérez-Reche. 2024. "Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model" Hygiene 4, no. 3: 326-345. https://doi.org/10.3390/hygiene4030026
APA StyleDzianach, P. A., Dykes, G. A., Strachan, N. J. C., Forbes, K. J., & Pérez-Reche, F. J. (2024). Unveiling the Mechanisms for Campylobacter jejuni Biofilm Formation Using a Stochastic Mathematical Model. Hygiene, 4(3), 326-345. https://doi.org/10.3390/hygiene4030026