A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics
Abstract
:1. Introduction
2. Analysis 1
- (i)
- solves Equation (2) so that is well defined.
- (ii)
- F is sixth-order Fréchet differential in I at some neighborhood S of solution .
3. Analysis 2
- (i)
- Equation
- (ii)
- Equation
- (iii)
- Equation
- (iv)
- Equation
- (v)
- Equation
- (a1)
- has a simple solution satisfying
- (a2)
- For allDefine
- (a3)
- For all
- (a4)
- and
- (a5)
- There exists satisfying
4. Numerical Conclusions
5. Consistent Conjugate Maps for Second-Degree Polynomials
6. Fixed Points (Extraneous)
7. Dynamical Study
- (i)
- Some times the Fatou set of a nonlinear map may also be defined as the solution space, and the Julia set of a nonlinear map may also be defined as the error space.
- (ii)
- Fractals are a very complicated phenomenon that may be defined as a self-similar surprising geometric object, which repeats at every small scale [16].
- 1.
- The dynamics of the Fatou set.
- 2.
- The dynamics of the Julia set.
7.1. For Example 2
- 1.
- Clearly, the proposed sixth-order CHN method has a Fatou set with bigger orbits in comparison to the other methods.
- 2.
- Newton’s method has no fixed points (extraneous). Further, there are 6 fixed points (extraneous) for Jarratt’s method and 36 fixed points (extraneous) for the proposed CHN method.
- 3.
- As we know that the magnitude of the derivative at these points is , these fixed points are repelling and are not the part of solution space. Thus, larger the number of fixed points poor the method will be.
7.2. For Example 5
- 1.
- The dynamics for all the methods contain a Fatou set with similar basins and a fractal Julia set with some chaotic behavior.
- 2.
- The black part is the Julia set, which exhibits chaotic behavior, which means the method fails or diverges. Clearly, Newton’s method obtained the biggest Julia set (Figure 2a).
- 3.
- The colored part with six different colors to each root is the Fatou set, which contains the basins of the methods. From Figure 2, we see that the proposed method (CHN) has a Fatou set with bigger orbits and thus basins, but it also has a Julia set with chaotic behavior at the border of the basins.
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrowski, A.M. Solutions of Equations and Systems of Equations; Academic Press: New York, NY, USA; London, UK, 1966. [Google Scholar]
- Argyros, I.K. Computational Theory of Iterative Methods; Series—Studies in Computational Mathematics; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K.; Singh, M.K. On the Contraharmonic-mean Newton’s method (CHN). J. Interdiscip. Math. 2023, 26, 231–243. [Google Scholar] [CrossRef]
- Argyros, I.K.; Singh, M.K. On the semilocal convergence of the Contraharmonic-mean Newton’s method (CHMN). Commun. Korean Math. Soc. 2022, 37, 1009–1023. [Google Scholar] [CrossRef]
- Singh, M.K.; Argyros, I.K. The Dynamics of a Continuous Newton-like Method. Mathematics 2022, 10, 3602. [Google Scholar] [CrossRef]
- Rall, L.B. Computational Solution of Nonlinear Operator Equations; Robert E. Krieger: New York, NY, USA, 1979. [Google Scholar]
- Wang, K.; Kou, J.; Gu, C. Semilocal convergence of a sixth-order jarrat method in Banach spaces. Numer. Algorithms 2011, 57, 441–456. [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Jarratt, P. Some fourth order multipoint iterative methods for solving equations. Math. Comp. 1966, 20, 434–437. [Google Scholar] [CrossRef]
- Kou, J.; Li, Y. An improvement of Jarratt method. Appl. Math. Comput. 2007, 189, 1816–1821. [Google Scholar] [CrossRef]
- Vrscay, E.R.; Gilbert, W.J. Extraneous fixed points, basin boundaries and chaotic dynamics for Schroder and Konig rational iteration functions. Numer. Math. 1987, 52, 1–16. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Plaza, S. Review of some iterative root-finding methods from a dynamical point of view. Scientia 2004, 10, 35. [Google Scholar]
- Argyros, I.K.; Magrenan, A.A. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press Taylor and Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Scott, M.; Neta, B.; Chun, C. Basin attractors for various methods. Appl. Math. Comput. 2011, 218, 2584–2599. [Google Scholar] [CrossRef]
- Julia, G. Memoire sure l’iteration des fonction rationelles. J. Math. Pures Appl. 1918, 81, 47–235. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Macmillan: New York, NY, USA, 1983; ISBN 978-0-7167-1186-5. [Google Scholar]
- Parida, P.K.; Gupta, D.K. Recurrence relations for a newton-like method in banach spaces. J. Comput. Appl. Math. 2007, 206, 873–887. [Google Scholar] [CrossRef]
- Veron, M.A.H.; Martinez, E. On the semilocal convergence of a three steps newton-type iterative process under mild convergence conditions. Numer. Algorithms 2015, 70, 377–392. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, Y. Third-order convergence theorem by using majorizing functions for a modified Newton’s method in Banach spaces. Appl. Math. Comput. 2006, 175, 1515–1524. [Google Scholar]
n | Newton Method (3) | Jarratt Method (35) | Kou and Li Method (36) | Proposed Method (1) |
---|---|---|---|---|
1 | 3.4286550628300567 | 3.3308347060483117 | 3.3400539516999523 | 3.32315410750057 |
2 | 3.3567192343584691 | 3.1621047829753062 | 3.1804266925540472 | 3.14712430657336 |
3 | 3.2844198112235032 | 3.0286129167008315 | 3.0494927271058243 | 3.01643362598904 |
4 | 3.2124063084511238 | 3.0000609473820439 | 2.9999154731807178 | 3.00000019275693 |
5 | 3.1424181594780256 | 3.0000000000000013 | 3.0000000000000000 | 3.0000000000000000 |
6 | 3.0787259144487731 | 2.9999999999999996 | ||
7 | 3.0298667132808625 | 3.0000000000000000 | ||
8 | 3.0051821604398370 | |||
9 | 3.0001727640389917 | |||
10 | 3.0000001961589162 | |||
11 | 3.0000000000002531 | |||
12 | 3.0000000000000000 |
Method | n | x | |
---|---|---|---|
Newton Method (3) | 1 | 3.50000000 | 41.87500000000000 |
2 | 2.36054421768707 | 12.15335132155504 | |
3 | 1.63351725484243 | 3.35884252127395 | |
4 | 1.21393130681298 | 0.78888464195259 | |
5 | 1.03548645503746 | 0.11028191827017 | |
6 | 1.00120223985296 | 0.00361105743855 | |
7 | 1.00000144306722 | 4.329207893061238 | |
8 | 1.00000000000208 | 6.247669048775606 | |
9 | 1.0000000000 | 0.00000000 | |
Jarratt Method (35) | 1 | 3.50000000 | 41.87500000000000 |
2 | 1.57229444273689 | 2.88688452342733 | |
3 | 1.02101066173731 | 0.06436560404449 | |
4 | 1.00000012371720 | 3.711516567417306 | |
5 | 1.0000000000 | 0.00000000 | |
Kou and Li Method (36) | 1 | 3.50000000 | 41.87500000000000 |
2 | 1.46161830566666 | 2.12249621615530 | |
3 | 1.00443745549946 | 0.01337152691029 | |
4 | 1.00000000000114 | 3.410605131648481 | |
5 | 1.0000000000 | 0.00000000 | |
Proposed Method (1) | 1 | 3.50000000 | 41.87500000000000 |
2 | 1.00463214431117 | 0.01396090260708 | |
3 | 1.00000000000002 | 7.327471962526033 | |
4 | 1.0000000000 | 0.00000000 |
Method | n | x | y | ||
---|---|---|---|---|---|
Newton Method (3) | 1 | 0.1000000 | 0.1000000 | 0.323333 | 0.323333 |
2 | 1.71667 | 1.71667 | −2.61361 | −2.61361 | |
3 | 0.955421 | 0.955421 | −0.579495 | −0.579495 | |
4 | 0.652154 | 0.652154 | −0.091971 | −0.091971 | |
5 | 0.58164 | 0.58164 | −0.00497212 | −0.00497212 | |
6 | 0.577366 | 0.577366 | |||
7 | 0.57735 | 0.57735 | |||
8 | 0.57735 | 0.57735 | |||
Jarratt Method (35) | 1 | 0.1000000 | 0.1000000 | 0.323333 | 0.323333 |
2 | 0.955421 | 0.955421 | −0.579495 | −0.579495 | |
3 | 0.58164 | 0.58164 | −0.00497212 | −0.00497212 | |
4 | 0.57735 | 0.57735 | −2.50303 | ||
5 | 0.57735 | 0.57735 | 0.00000000 | 0.00000000 | |
Kou and Li method (36) | 1 | 0.1000000 | 0.1000000 | 0.323333 | 0.323333 |
2 | 0.889224 | 0.889224 | −0.457387 | −0.457387 | |
3 | 0.577802 | 0.577802 | −0.000522292 | −0.000522292 | |
4 | 0.57735 | 0.57735 | 0.00000000 | 0.00000000 | |
Proposed method (1) | 1 | 0.1000000 | 0.1000000 | 0.323333 | 0.323333 |
2 | 0.935823 | 0.935823 | −0.542431 | −0.542431 | |
3 | 0.57794 | 0.57794 | −0.000681532 | −0.000681532 | |
4 | 0.57735 | 0.57735 | 0.00000000 | 0.00000000 |
n | ||||
---|---|---|---|---|
1 | 0.5208651381932472 | 0.9863298060604199 | 1.7240910913420728 | −0.3497788800805113 |
2 | 0.6992219563196387 | 0.9822804417862183 | 0.26509584921922036 | −0.039178397410117194 |
3 | 0.728002081941415 | 0.9821489931797941 | 0.033812606796022715 | −0.005157680294762157 |
4 | 0.7316443315500164 | 0.9820746816221972 | 0.0040854346553378384 | −0.0006269825560529796 |
5 | 0.7320838072613625 | 0.9820646544298595 | 0.0004901305894167152 | −0.00007540810200934445 |
6 | 0.7321365054143987 | 0.982063417353375 | 0.00005873750588891724 | −9.042290220806493 |
7 | 0.7321428200798787 | 0.9820632682383741 | 7.037960539690857 | −1.0835765131833597 |
8 | 0.7321435766903267 | 0.9820632503521937 | 8.432707918615279 | −1.2983405106581358 |
9 | 0.7321436673451523 | 0.9820632482087217 | 1.0103819869655695 | −1.5556382404469105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.K.; Argyros, I.K.; Regmi, S. A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics. Foundations 2024, 4, 47-60. https://doi.org/10.3390/foundations4010005
Singh MK, Argyros IK, Regmi S. A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics. Foundations. 2024; 4(1):47-60. https://doi.org/10.3390/foundations4010005
Chicago/Turabian StyleSingh, Manoj K., Ioannis K. Argyros, and Samundra Regmi. 2024. "A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics" Foundations 4, no. 1: 47-60. https://doi.org/10.3390/foundations4010005
APA StyleSingh, M. K., Argyros, I. K., & Regmi, S. (2024). A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics. Foundations, 4(1), 47-60. https://doi.org/10.3390/foundations4010005