Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH, , NO, and TiO, Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. MATLAB Scripts
2.1.1. BESP.m
2.1.2. NMT.m
2.1.3. Data Files
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BESP | Boltzmann Equilibrium Spectral Program |
AMO | Atomic, Molecular, Optical |
AlO | Aluminum Monoxide |
C | Diatomic Carbon |
CNr | Cyanide red system |
CNv | Cyanide violet system |
ExoMol | Molecular line lists for exoplanet and other hot atmospheres |
FWHM | Full-Width at Half Maximum |
HITEMP | High temperature molecular spectroscopic database |
LIBS | Laser-Induced Breakdown Spectroscopy |
LSF | Line-Strength file |
NMT | Nelder–Mead Temperature |
OH | Hydroxyl |
N | singly ionized nitrogen |
NO | Nitrogen Monoxide |
PGOPHER | Program for simulating rotational, vibrational and electronic spectra |
SATP | Standard Ambient Temperature and Pressure |
TiO-AX | Titanium Monoxide band |
TiO-BX | Titanium Monoxide band |
wIRE | Wiley interdisciplinary reviews |
Appendix A
Data File | Transition Lines | Equal Lines | Vibrational Levels |
---|---|---|---|
ExoMol.dat | 856 | 512 | 0,1,2,3,4 |
OH-LSF.txt | 528 | 512 | 0,1 |
References
- Kunze, H.-J. Introduction to Plasma Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Fujimoto, T. Plasma Spectroscopy; Clarendon Press: Oxford, UK, 2004. [Google Scholar]
- Ochkin, V.N. Spectroscopy of Low Temperature Plasma; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Omenetto, N. (Ed.) Analytical Laser Spectroscopy; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Demtröder, W. Laser Spectroscopy 1: Basic Principles, 5th ed.; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Demtröder, W. Laser Spectroscopy 2: Experimental Techniques, 5th ed.; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 1, Atoms and Spectroscopy; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 2, Molecules and Photons—Spectroscopy and Collisions; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- McKemmish, L.K. Molecular diatomic spectroscopy data. WIREs Comput. Mol. Sci. 2021, 11, e1520. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Clark, V.H.J.; Chubb, K.L.; Conway, E.K.; Dewan, A.; Gorman, M.N.; Hill, C.; Lynas-Gray, A.E.; et al. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107228. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Western, C.M. PGOPHER, A Program for Simulating Rotational, Vibrational and Electronic Spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications; Cambridge Univ. Press: New York, NY, USA, 2006. [Google Scholar]
- Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- De Giacomo, A.; Hermann, J. Laser-induced plasma emission: From atomic to molecular spectra. J. Phys. D Appl. Phys. 2017, 50, 183002. [Google Scholar] [CrossRef]
- Parigger, C.G. Laser-induced breakdown in gases: Experiments and simulation. In Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications; Miziolek, A.W., Palleschi, V., Schechter, I., Eds.; Cambridge Univ. Press: New York, NY, USA, 2006; Chapter 4; pp. 171–193. [Google Scholar]
- Parigger, C.G.; Surmick, D.M.; Helstern, C.M.; Gautam, G.; Bol’shakov, A.A.; Russo, R. Molecular Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 7; pp. 167–212. [Google Scholar]
- Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spatiotemporal Cyanide Spectroscopy and Applications. Molecules 2020, 25, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spectroscopy of Hydroxyl with Applications. Molecules 2020, 25, 988. [Google Scholar] [CrossRef] [Green Version]
- Parigger, C.G. Review of spatiotemporal analysis of laser-induced plasma in gases. Spectrochim. Acta Part B At. Spectrosc. 2021, 179, 106122. [Google Scholar] [CrossRef]
- Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta Part B At. Spectrosc. 2015, 107, 132–138. [Google Scholar] [CrossRef]
- Parigger, C.G.; Hornkohl, J.O. Quantum Mechanics of the Diatomic Molecule with Applications; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Hornkohl, J.O.; Nemes, L.; Parigger, C.G. Spectroscopy of Carbon Containing Diatomic Molecules. In Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors: Advances in the Understanding of the Most Complex High-Temperature Elemental System; Chapter 4; Nemes, L., Irle, S., Eds.; World Scientific: Singapore, 2011; Chapter 4; pp. 113–165. [Google Scholar]
- Surmick, D.M.; Hornkohl, J.O.; The University of Tennessee, University of Tennessee Space Institute, Tullahoma, TN, USA. Personal communication, 2016.
- MATLAB Release R2022a Update 5; The MathWorks, Inc.: Natick, MA, USA, 2022.
- Parigger, C.G.; Woods, A.C.; Witte, M.J.; Swafford, L.D.; Surmick, D.M. Measurement and analysis of atomic hydrogen and diatomic molecular AlO, C2, CN, and TiO spectra following laser-induced optical breakdown. J. Vis. Exp. 2014, 84, e51250. [Google Scholar]
- Barrell, H.; Sears, J.E. The Refraction and Dispersion of Air for the Visible Spectrum. Philos. Trans. R. Soc. Lond. 1939, 238, 1–64. [Google Scholar]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Corney, A. Atomic and Laser Spectroscopy; Clarendon Press: Oxford, UK, 1977. [Google Scholar]
- Parigger, C.G. Hydroxyl Spectroscopy of Laboratory Air Laser-Ignition. Foundations 2022, 2, 934–948. [Google Scholar] [CrossRef]
- Dors, I.G.; Parigger, C.; Lewis, J.W.L. Spectroscopic temperature determination of aluminum monoxide in laser ablation with 266-nm radiation. Opt. Lett. 1998, 23, 1778–1780. [Google Scholar] [CrossRef]
- Parigger, C.; Plemmons, D.H.; Hornkohl, J.O.; Lewis, J.W.L. Spectroscopic Temperature Measurements in a Decaying Laser-Induced Plasma Using the C2 Swan System. J. Quant. Spectrosc. Radiat. Transf. 1994, 52, 707–711. [Google Scholar] [CrossRef]
- Trautner, S.; Jasik, J.; Parigger, C.G.; Pedarnig, J.D.; Spendelhofer, W.; Lackner, J.; Veis, P.; Heitz, J. Laser-induced breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 174, 331–338. [Google Scholar] [CrossRef]
- Hornkohl, J.O.; Parigger, C.; Lewis, J.W.L. Temperature Measurements from CN Spectra in a Laser-Induced Plasma. J. Quant. Spectrosc. Radiat. Transf. 1991, 46, 405–411. [Google Scholar] [CrossRef]
- Parigger, C.; Plemmons, D.H.; Hornkohl, J.O.; Lewsi, J.W.L. Temperature measurements from first-negative spectra produced by laser-induced multiphoton ionization and optical breakdown of nitrogen. Appl. Opt. 1995, 34, 3331–3335. [Google Scholar] [CrossRef] [PubMed]
- Hornkohl, J.O.; Fleischmann, J.P.; Surmick, D.M.; Witte, M.J.; Swaffor, L.D.; Woods, A.C.; Parigger, C.G. Emission spectroscopy of nitric oxide in laser-induced plasma. J. Phys. Conf. Ser. 2014, 548, 12040. [Google Scholar] [CrossRef]
- Parigger, C.G.; Woods, A.C.; Keszler, A.; Nemes, L.; Hornkohl, J.O. Titanium monoxide spectroscopy following laser-induced optical breakdown. AIP Conf. Proc. 2012, 1464, 628–639. [Google Scholar]
- Woods, A.C.; Parigger, C.G.; Hornkohl, J.O. Measurement and analysis of titanium monoxide spectra in laser-induced plasma. Opt. Lett. 2012, 37, 5139–5141. [Google Scholar] [CrossRef] [PubMed]
- Parigger, C.G.; Guan, G.; Hornkohl, J.O. Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air. Appl. Opt. 2003, 42, 5986–5991. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S.A.; Bernath, P.F.; Western, C.M.; Sneden, C.; Afşar, M.; Li, G.; Gordon, I.E. Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH. J. Quant. Spectrosc. Radiat. Transf. 2016, 138, 142–157. [Google Scholar] [CrossRef]
- Yousefi, M.; Bernath, P.F.; Hodges, J.; Masseron, T. A new line list for the A2Σ − X2Π electronic transition of OH. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 416–424. [Google Scholar] [CrossRef]
- Bernath, P.F. MoLLIST: Molecular Line Lists, Intensities and Spectra. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106687. [Google Scholar] [CrossRef]
- Luque, J.; Crosley, D.R. LIFBASE: Database and Spectral Simulation for Diatomic Molecules. 2021. Available online: https://www.sri.com/platform/lifbase-spectroscopy-tool (accessed on 25 November 2019).
- Luque, J.; Crosley, D.R. Transition probabilities in the A2Σ+ − X2Πi electronic system of OH. J. Chem. Phys. 1998, 109, 439–448. [Google Scholar] [CrossRef]
- Tatum, J. Stellar Atmospheres; Open Education Resource LibreTexts Project: LibreTexts Physics, Shared under CC BY-NC 4.0 Licence; Last Updated March 5; University of Victoria: Victoria, BC, Canada, 2022. [Google Scholar]
Parameter | Value |
---|---|
272.643 | |
1.2288 (m) | |
0.03555 (m) |
Parameter | Value (m) |
---|---|
(k0) | 238.0185 |
(k1) | 5,792,105 |
(k2) | 57.362 |
(k3) | 167,917 |
Constant | Value |
---|---|
Planck constant (h) | 6.62606957 × (J s) |
speed of light (c) | 2.99792458 × (m s) |
Boltzmann constant (kb) | 1.3806488 × (J K) |
Description | Variable |
---|---|
wavelength minimum | wl_min (cm) |
wavelength maximum | wl_max (cm) |
temperature | T (kK) |
full-width at half maximum | FWHM, (nm) |
number of points | N |
normalization | norm |
file name | x |
Description | Variable | Coulumn |
---|---|---|
wave number | WN (cm) | 1 |
upper term value | Tu (cm) | 2 |
line strength | S (stC cm) | 3 |
Diatomic Molecule | Line-Strength Data File | Wavelength Range (nm) | Number of Spectral Lines |
---|---|---|---|
aluminum monoxide (AlO) | AlO-BX-LSF.txt | 430.72–997.66 | 33,484 |
carbon Swan spectra (C) | C2-Swan-LSF.txt | 410.93–678.58 | 29,004 |
cyanide red (CNr) system | CNr-LSF.txt | 499.89–4997.56 | 40,728 |
cyanide violet (CNv) system | CNv-LSF.txt | 372.88–425.22 | 7960 |
hydroxyl (OH) violet system | OH-LSF.txt | 278.65–379.72 | 1683 |
nitrogen monoxide (NO) gamma system | NO-GAMMA-LSF.txt | 200.41–285.95 | 13,000 |
singly ionized nitrogen (N) | N2p-LSF.txt | 319.04–501.46 | 7302 |
titanium monoxide (TiO) band | TiO-AX-LSF.txt | 599.58–945.44 | 66,962 |
titanium monoxide (TiO) band | TiO-BX-LSF.txt | 582.73–679.12 | 34,648 |
Diatomic Molecule | Line-Strength Data | Spectral Resolution (nm) | Temperature (kK) | Reference | Figure |
---|---|---|---|---|---|
aluminum monoxide (AlO) | AlO-BX-LSF.txt | 1.0 | 3.33 | [31] | Figure 1 |
carbon Swan spectra (C) | C2-Swan-LSF.txt | 0.39 | 6.75 | [32] | Figure 2 |
cyanide red (CNr) system | CNr-LSF.txt | 0.38 | 7.5 | [33] | Figure 3 |
cyanide violet (CNv) system | CNv-LSF.txt | 0.030 | 7.94 | [34] | Figure 4 |
singly ionized nitrogen (N) | N2p-LSF.txt | 0.035 | 5.1 | [35] | Figure 5 |
hydroxyl (OH) ultraviolet system | OH-LSF.txt | 0.35 | 3.39 | [30] | Figure 6 |
nitrogen monoxide (NO) gamma system | NO-GAMMA-LSF.txt | 0.056 | 6.8 | [36] | Figure 7 |
titanium monoxide (TiO) band | TiO-AX-LSF.txt | 0.10 | 3.03 | [37] | Figure 8 |
titanium monoxide (TiO) band | TiO-BX-LSF.txt | 0.40 | 3.6 | [38] | Figure 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parigger, C.G.
Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH,
Parigger CG.
Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH,
Parigger, Christian G.
2023. "Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH,
Parigger, C. G.
(2023). Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH,