On the Semi-Local Convergence of a Fifth-Order Convergent Method for Solving Equations
Abstract
:1. Introduction
2. Majorizing Sequence
- ():
- ():
- ():
3. Semi-Local Convergence
- ():
- ():
- ():
- (i)
- The point is a simple solution of equation in .
- (ii)
- There exists such that
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argyros, I.K.; Magreñán, A.A. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Amat, S.; Argyros, I.K.; Busquier, S.; Hernández-Verón, M.A. On two high-order families of frozen Newton-type methods. Numer. Linear Algebra Appl. 2018, 25, e2126. [Google Scholar] [CrossRef]
- Amat, S.; Bermudez, C.; Hernandez, M.A.; Martinez, E. On an efficient k-step iterative method for nonlinear equations. J. Comput. Appl. Math. 2016, 302, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; George, S. On the complexity of extending the convergence region for Traub’s method. J. Complex. 2020, 56, 101423. [Google Scholar] [CrossRef]
- Argyros, I.K.; George, S. On a two-step Kurchatov-type method in Banach space. Mediterr. J. Math. 2019, 16, 21. [Google Scholar] [CrossRef]
- Argyros, I.K.; Shakhno, S. Extended Two-Step-Kurchatov Method for Solving Banach Space Valued Nondifferentiable Equations. Int. J. Appl. Comput. Math. 2020, 6, 32. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Martínez, E.; Torregrosa, J.R. Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 2009, 231, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Shakhno, S.M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comput. Appl. Math. 2009, 231, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Shakhno, S.M.; Iakymchuk, R.P.; Yarmola, H.P. Convergence of a two-step method for the nonlinear least squares problem with decomposition of operator. J. Numer. Appl. Math. 2018, 2, 82–95. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
k | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1.98 × 10 | 3.60 × 10 | 3.92 × 10 | 6.71 × 10 | 2.37 × 10 | 1.62 × 10 | 1.80 × 10 | 2.96 × 10 |
1 | 3.23 × 10 | 4.86 × 10 | 6.93 × 10 | 2.22 × 10 | 3.23 × 10 | 2.34 × 10 | 1.74 × 10 | 3.05 × 10 |
2 | 0 | 6.95 × 10 | 1.11 × 10 | 1.72 × 10 | 1.11 × 10 | 7.69 × 10 | 1.11 × 10 | 7.70 × 10 |
3 | 0 | 0 | 0 | 7.77 × 10 | 1.11 × 10 | 7.77 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, C.I.; Argyros, I.K.; Shakhno, S.; Yarmola, H. On the Semi-Local Convergence of a Fifth-Order Convergent Method for Solving Equations. Foundations 2022, 2, 140-150. https://doi.org/10.3390/foundations2010008
Argyros CI, Argyros IK, Shakhno S, Yarmola H. On the Semi-Local Convergence of a Fifth-Order Convergent Method for Solving Equations. Foundations. 2022; 2(1):140-150. https://doi.org/10.3390/foundations2010008
Chicago/Turabian StyleArgyros, Christopher I., Ioannis K. Argyros, Stepan Shakhno, and Halyna Yarmola. 2022. "On the Semi-Local Convergence of a Fifth-Order Convergent Method for Solving Equations" Foundations 2, no. 1: 140-150. https://doi.org/10.3390/foundations2010008
APA StyleArgyros, C. I., Argyros, I. K., Shakhno, S., & Yarmola, H. (2022). On the Semi-Local Convergence of a Fifth-Order Convergent Method for Solving Equations. Foundations, 2(1), 140-150. https://doi.org/10.3390/foundations2010008