Generalized Fractional Integrals Involving Product of a Generalized Mittag–Leffler Function and Two H-Functions
Abstract
:1. Introduction and Preliminaries
- (i)
- if , then the above extended Wright function is an entire function of y.
- (ii)
- if and either or ,, then the series in is absolutely convergent.
2. Main Results
- (i)
- , , where.
- (ii)
- , , where.
- (iii)
- , also we have,.
3. Special Cases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Purohit, S.D.; Kalla, S.L. On fractional partial differential equations related to quantum mechanics. J. Phys. AMath. Theor. 2011, 44, 45–202. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theorey and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Mathai, A.M.; Saxena, R.K. Distribution of a product and the structural setup of densities. Ann. Math. Statist. 1969, 4, 1439–1448. [Google Scholar] [CrossRef]
- Agarwal, P. Fractional integration of the product of two H-functions and a general class of polynomials. Asian J. Appl. Sci. 2012, 5, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Saigo, M.; Maeda, N. More Generalization of Fractional Calculus. In Transform Methods and Special Functions, Varna’96; Bulgarian Academy of Sciences: Varna, Bulgaria, 1996; pp. 386–400. [Google Scholar]
- Mittag–Leffler, G.M. Sur la nouvelle fonction Eξ(x). C. R. Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Wiman, A. U ber der Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function inthe kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Trujullo, J.J. On the generalized Wright function. Frac. Calc. Appl. Anal. 2002, 5, 437–466. [Google Scholar]
- Saxena, R.K.; Nishimoto, K. N-fractional calculus of generalized Mittag–Leffler functions. J. Fract. Calc. 2010, 37, 43–52. [Google Scholar]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag–Leffler function. Integral Transform. Spec. Funct. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Agarwal, P.; Suthar, D.; Jain, S.; Momani, S. The extended multi-index Mittag–Leffler functions and their properties connected with fractional calculus and integral transforms. Thai J. Math. 2021, 19, 4625. [Google Scholar]
- Choudhary, M.A.; Qadir, A.; Srivastva, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar]
- Srivasta, H.M.; Gupta, K.C.; Goyal, S.P. The H Function of One and Two Variables with Applicatons; South Asian Publication: New Delhi, India; Madras, India, 1982. [Google Scholar]
- Baleanu, D.; Agarwal, P.; Purohit, S.D. Certain fractional integral formulas involving the product of generlized Bessel function. Sci. World J. 2014, 2014, 567132. [Google Scholar]
- Baleanu, D.; Mustafa, O.G. On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 2010, 59, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Mustafa, O.G.; Agarwal, R.P. On the solution set for a class of sequential fractional differential equations. J. Phys. A Math. Theor. 2010, 43, 385209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Jain, S.; Agarwal, P. Generalized Fractional Integrals Involving Product of a Generalized Mittag–Leffler Function and Two H-Functions. Foundations 2022, 2, 298-307. https://doi.org/10.3390/foundations2010021
Singh P, Jain S, Agarwal P. Generalized Fractional Integrals Involving Product of a Generalized Mittag–Leffler Function and Two H-Functions. Foundations. 2022; 2(1):298-307. https://doi.org/10.3390/foundations2010021
Chicago/Turabian StyleSingh, Prakash, Shilpi Jain, and Praveen Agarwal. 2022. "Generalized Fractional Integrals Involving Product of a Generalized Mittag–Leffler Function and Two H-Functions" Foundations 2, no. 1: 298-307. https://doi.org/10.3390/foundations2010021
APA StyleSingh, P., Jain, S., & Agarwal, P. (2022). Generalized Fractional Integrals Involving Product of a Generalized Mittag–Leffler Function and Two H-Functions. Foundations, 2(1), 298-307. https://doi.org/10.3390/foundations2010021