Analogues of the Laplace Transform and Z-Transform with Piecewise Linear Kernels
Abstract
:1. Introduction
2. A Continuous Transform with a Piecewise Linear Kernel
2.1. Properties of the Continuous Transform
2.2. Examples
3. A Discrete Transform with a Piecewise Linear Kernel
3.1. Properties of the Discrete Transform
3.2. Examples
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bateman, H.; Erdélyi, A. Tables of Integral Transforms, 1st ed.; Bateman Manuscript Project II; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Bosch, P.; Carmenate García, H.J.; Rodríguez, J.M.; Sigarreta, J.M. On the generalized Laplace transform. Symmetry 2021, 13, 669. [Google Scholar] [CrossRef]
- Davies, B. Integral Transforms and Their Applications, 3rd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Graham, R.; Knuth, D.E.; Patashik, O. Concrete Mathematics: A Foundation for Computer Science; Addison-Wesley: Reading, UK, 1989. [Google Scholar]
- Knuth, D. The Art of Computer Programming; Addison-Wesley: Reading, UK, 2011; Volume 1–4. [Google Scholar]
- Poularikas, A.D. (Ed.) The Transforms and Applications Handbook; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Rodrigo, M.R. Laplace and Z transforms of linear dynamical systems and conic sections. Z. Angew. Math. Phys. (ZAMP) 2016, 67, 57. [Google Scholar] [CrossRef]
- Futcher, T.; Rodrigo, M.R. A general class of integral transforms and an expression for their convolution formulas. Integral Transform. Spec. Funct. 2021. [Google Scholar] [CrossRef]
- Elaydi, S. An Introduction to Difference Equations, 3rd ed.; Springer Science: New York, NY, USA, 2005. [Google Scholar]
- Spiegel, M.R. Schaum’s Outline of Theory and Problems of Laplace Transforms; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Horváth, I.; Mészáros, A.; Telek, M. Numerical inverse transformation methods for Z-Transform. Mathematics 2020, 8, 556. [Google Scholar] [CrossRef][Green Version]
- Golebioswski, M.; Golebiowski, L.; Smolen, A.; Mazur, D. Direct consideration of eddy current losses in laminated magnetic cores in finite element method (FEM) calculations using the Laplace transform. Energies 2020, 13, 1174. [Google Scholar] [CrossRef][Green Version]
- Karnas, G. Computation of lightning current from electric field based on Laplace transform and deconvolution method. Energies 2021, 14, 4201. [Google Scholar] [CrossRef]
- Holder, A.B.; Rodrigo, M.R. An integration-based method for estimating parameters in a system of differential equations. Appl. Math. Comput. 2013, 219, 9700–9708. [Google Scholar] [CrossRef]
- Zulkarnaen, D.; Rodrigo, M.R. Modelling human carrying capacity as a function of food availability. ANZIAM J. 2020, 62, 318–333. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, M.R.; Li, M. Analogues of the Laplace Transform and Z-Transform with Piecewise Linear Kernels. Foundations 2021, 1, 99-115. https://doi.org/10.3390/foundations1010008
Rodrigo MR, Li M. Analogues of the Laplace Transform and Z-Transform with Piecewise Linear Kernels. Foundations. 2021; 1(1):99-115. https://doi.org/10.3390/foundations1010008
Chicago/Turabian StyleRodrigo, Marianito R., and Mandy Li. 2021. "Analogues of the Laplace Transform and Z-Transform with Piecewise Linear Kernels" Foundations 1, no. 1: 99-115. https://doi.org/10.3390/foundations1010008