Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations
Abstract
:1. Introduction
2. Convergence Analysis of Method (2)
- (a)
- Let and The radius was obtained by Argyros in [1] as the convergence radius for Newton’s method under conditions (17)–(19). Notice that the convergence radius for Newton’s method given independently by Rheinboldt [23] and Traub [25] is given by
- (b)
- By (a2) and
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Argyros, I.K. Computational Theory of Iterative Methods; Elsevier: Amsterdam, The Netherlands, 2007; Volume 15. [Google Scholar]
- Argyros, I.K.; George, S.; Thapa, N. Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications; Nova Publishes: New York, NY, USA, 2018; Volume I. [Google Scholar]
- Argyros, I.K.; George, S.; Thapa, N. Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications; Nova Publishes: New York, NY, USA, 2018; Volume II. [Google Scholar]
- Argyros, I.K.; Cordero, A.; Magreñán, A.A.; Torregrosa, J.R. Third-degree anomalies of Traub’s method. J. Comput. Appl. Math. 2017, 309, 511–521. [Google Scholar] [CrossRef]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newtons method. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis: Efficient Algorithms, Fixed Point Theory and Applications; World Scientific: Singapore, 2013. [Google Scholar]
- Argyros, I.K.; Magreñán, A.A.; Orcos, L.; Sicilia, J.A. Local convergence of a relaxed two-step Newton like method with applications. J. Math. Chem. 2017, 55, 1427–1442. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Chicharo, F.I.; Cordero, A.; Garrido, N.; Torregrosa, J.R. A new efficient methods for solving nonlinear systems. J. Diff. Equat. Appl. 2019. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. 2015, 275, 502–515. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R.; Vindel, P. Study of the dynamics of third-order iterative methods on quadratic polynomials. Int. J. Comput. Math. 2012, 89, 1826–1836. [Google Scholar] [CrossRef] [Green Version]
- Ezquerro, J.A.; Herńandez-Veŕon, M.A. How to improve the domain of starting points for Steffensen’s method. Stud. Appl. Math. 2014, 132, 354–380. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Herńandez-Veŕon, M.A. Majorizing sequences for nonlinear Fredholm Hammerstein integral equations. Stud. Appl. Math. 2018, 140, 270–297. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Grau-Śanchez, M.; Herńandez-Veŕon, M.A.; Noguera, M. A family of iterative methods that uses divided differences of first and second orders. Numer. Algorithms 2015, 70, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Ezquerro, J.A.; Herńandez-Veŕon, M.A.; Velasco, A.I. An analysis of the semilocal convergence for Secant-like methods. Appl. Math. Comput. 2015, 266, 883–892. [Google Scholar] [CrossRef]
- Herńandez-Veŕon, M.A.; Martínez, E.; Teruel, C. Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numer. Algorithms 2017, 76, 309–331. [Google Scholar] [CrossRef]
- LKantorovich, V.; Akilov, G.P. Functional Analysis, 2nd ed.; Pergamon Press: Oxford, NY, USA, 1982. [Google Scholar]
- nán, A.A.M.; Cordero, A.; Gutiérrez, J.M.; Torregrosa, J.R. Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. Math. Comput. Simul. 2014, 105, 49–61. [Google Scholar]
- Magreñán, A.A.; Argyros, I.K. Improved convergence analysis for Newton-like methods. Numer. Algorithms 2016, 71, 811–826. [Google Scholar] [CrossRef]
- Magreñán, A.A.; Argyros, I.K. Two-step Newton methods. J. Complex. 2014, 30, 533–553. [Google Scholar] [CrossRef]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Pitman Advanced Publishing Program: Boston, MA, USA, 1984; Volume 103. [Google Scholar]
- Rheinboldt, W.C. An Adaptive Continuation Process for Solving Systems of Nonlinear Equations; Polish Academy of Science, Banach Ctr. Publ.: Warsaw, Poland, 1978; pp. 129–142. [Google Scholar]
- Ren, H.; Argyros, I.K. On the convergence of King-Werner-type methods of order free of derivatives. Appl. Math. Comput. 2015, 256, 148–159. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; American Mathematical Soc.: Providence, RI, USA, 1982. [Google Scholar]
- Amat, S.; Argyros, I.K.; Busquier, S.; Herńandez-Veŕon, M.A. On two high-order families of frozen Newton-type methods. Numer. Linear Algebra Appl. 2018, 25, e2126. [Google Scholar] [CrossRef]
- Amat, S.; Berḿudez, C.; Herńandez-Veŕon, M.A.; Martinez, E. On an efficient k-step iterative method for nonlinear equations. J. Comput. Appl. Math. 2016, 302, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Amat, S.; Busquier, S.; Berḿudez, C.; Plaza, S. On two families of high order Newton type methods. Appl. Math. Lett. 2012, 25, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations. Foundations 2021, 1, 23-31. https://doi.org/10.3390/foundations1010004
Regmi S, Argyros CI, Argyros IK, George S. Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations. Foundations. 2021; 1(1):23-31. https://doi.org/10.3390/foundations1010004
Chicago/Turabian StyleRegmi, Samundra, Christopher I. Argyros, Ioannis K. Argyros, and Santhosh George. 2021. "Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations" Foundations 1, no. 1: 23-31. https://doi.org/10.3390/foundations1010004
APA StyleRegmi, S., Argyros, C. I., Argyros, I. K., & George, S. (2021). Ball Convergence of a Parametric Efficient Family of Iterative Methods for Solving Nonlinear Equations. Foundations, 1(1), 23-31. https://doi.org/10.3390/foundations1010004