Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer
Abstract
1. Introduction
- Resectable PDAC (R-PDAC)—These tumors that do not involve major peripancreatic vessels (such as the superior mesenteric artery (SMA), celiac axis, or portal vein) and can be removed surgically with a high likelihood of achieving R0 resection (no microscopic residual tumor). There are no distant metastases.
- Borderline resectable PDAC (BR-PDAC)—These tumors demonstrate limited contact with surrounding vessels, such as ≤180° involvement of the SMA or celiac axis, or short segment occlusion of the portal or superior mesenteric vein, where vascular reconstruction is feasible. These tumors are technically resectable but carry a higher risk of incomplete resection (R1).
- Locally advanced PDAC—These tumors involve extensive vascular encasement or occlusion without possibility of reconstruction, precluding curative surgery.
- Metastatic PDAC—These are characterized by the presence of distant metastases, such as to the liver, peritoneum, or lungs, which excludes the possibility of curative surgical intervention.
2. Tumor Resectability Criteria
| Anatomical Structure | NCCN | MDACC | AHPBA/SSO/SSAT | IAP | |
|---|---|---|---|---|---|
| Resectable | SMA | No tumor contact | No extension; normal fat plane between the tumor and the artery | Clear fat planes around the SMA | No tumor contact |
| CA and CHA | No tumor contact | No extension | Clear fat planes around the CA and PHA | No tumor contact | |
| SMV and PV | No tumor contact, with or ≤180° contact without vein contour irregularity. | Patent | No radiographic evidence abutment, distortion, tumor thrombus, or venous encasement. | No tumor contact, or unilateral narrowing | |
| Borderline resectable | SMA | Solid tumor contact, with the SMA of ≤180°. | Tumor abutment ≤ 180° | Tumor abutment of the SMA not to exceed 180° | tumor contact of less than 180° without showing deformity/stenosis. |
| CA and CHA | Solid tumor contact, with CHA without extension to CA or PHA bifurcation allowing for safe and complete resection and reconstruction Solid tumor contact, with variant arterial anatomy | Short-segment encasement/abutment of the CHA (typically at the gastroduodenal origin); the surgeon should be prepared for vascular resection/interposition grafting | Gastroduodenal artery encasement up to the PHA with either short segment encasement or direct abutment of the PHA without extension to the CA | CA: tumor contact of less than 180° without showing deformity/stenosis. CHA: tumor contact without showing tumor contact of the PHA and/or CA. | |
| SMV and PV | Solid tumor contact, of >180° or contact of ≤180° with contour irregularity or thrombosis but allowing for safe and complete resection and vein reconstruction or Solid tumor contact, with the IVC | Short-segment occlusion with suitable vessel above and below; segmental venous occlusion alone without SMA involvement is rare and should be apparent on CT images | Tumor abutment, narrowing of the lumen, encasement of the SMV/PV but without encasement of the nearby arteries, or short segment venous occlusion with suitable vessel proximal and distal to the area of vessel involvement, allowing for safe resection and reconstruction | tumor contact 180 or greater or bilateral narrowing/occlusion, not exceeding the inferior border of the duodenum. | |
| Locally advanced | SMA | Solid tumor contact > 180° | Encased (>180°) | Encasement | Tumor contact/invasion of 180 or more degree. |
| CA and CHA | Solid tumor contact > 180° Solid tumor contact, with the CA and aortic involvement | Encased and no technical option for reconstruction usually because of extension to the CA/splenic/left gastric junction or the celiac origin | Unreconstructable | CA: tumor contact/invasion of ≥180° CHA: tumor contact/invasion showing tumor contact/invasion of the PHA and/or CA. Tumor contact or invasion of Aorta | |
| SMV and PV | Not currently amenable to resection and primary reconstruction due to complete occlusion of SMV/PV | Occluded and no technical option for reconstruction | Unreconstructable | Bilateral narrowing/occlusion, exceeding the inferior border of the duodenum |
3. PDAC Management Options
4. NAT in R-PDAC
| Author | Year | Primary Outcome | Treatment by Group | Number of Patients | Resection Rate (R0 Resection Rate) | Median Overall Survival |
|---|---|---|---|---|---|---|
| Palmer et al. [39] | 2007 | Resection Rate | Neoadjuvant GEM + Cisplatin | 26 | 70% (46%) | 15.6 mth |
| Neoadjuvant GEM | 24 | 38% (25%) | 9.9 mth | |||
| Golcher et al. [40] | 2015 | OS | Neoadjuvant GEM + Cisplatin + RT (55.8 Gy) | 33 | 57.6% (51.5%) | 17.4 mth |
| US | 33 | 69.7% (48.5%) | 14.4 mth | |||
| Casadei et al. [41] | 2015 | R0 resection rate | Neoadjuvant GEM + RT (45 Gy) | 18 | 61% (38.9%) | 22.4 mth |
| US | 20 | 75% (25%) | 19.5 mth | |||
| Reni et al. (PACT-15) [33] | 2018 | 1-year event free | Surgery followed by adjuvant gemcitabine | 26 | 84.6% (23.1%) | 20.4 mth |
| Surgery followed by adjuvant PEXG | 30 | 90% (33%) | 26.4 mth | |||
| Three cycles of PEXG before and three after surgery | 32 | 84.4% (53.1%) | 38.2 mth | |||
| Unno et al. (Prep-02/JSAP-05) [42] | 2019 | OS | Neoadjuvant GEM + S1 | 180 | No data available | 36.7 mth |
| US | 182 | 26.6 mth | ||||
| Sohal et al. (SWOG S1505) [43] | 2021 | 2-year OS | Neoadjuvant FOLFIRINOX | 55 | 73% (61.2%) | 23.2 mth |
| Neoadjuvant GEM/nab-PTX | 47 | 70% (59.6%) | 23.6 mth | |||
| Seufferlein et al. (NEONAX) [30] | 2022 | DFS at 18 mth | Neoadjuvant GEM/nab-PTX | 59 | 69.5% (87.8%) | 25.5 mth |
| Upfront surgery and adjuvant GEM/nab-PTX | 59 | 78% (67.4%) | 16.7 mth | |||
| Sugiura et al. (JASPAC-04) [44] | 2023 | 2-year progression-free survival rate | Neoadjuvant S1 + RT (50.4 Gy) | 52 | 80.3% (78.4%) | 37.7 mth 2-year survival rate: 66.7% |
| Neoadjuvant Gem + S1 | 51 | 88.2% (76.5%) | not reached 2-year survival rate: 72.4% | |||
| Labori KJ et al. (NORPACT-1) [29] | 2024 | OS | Neoadjuvant FOLFIRINOX | 77 | 82% (56%) | 25.1 mth |
| US | 63 | 89% (39%) | 38.5 mth |
5. NAT in BR-PDAC
| Author | Year | Primary Outcome | Groups | Number of Patients | Resection Rate (R0 Resection Rate) | Median Overall Survival |
|---|---|---|---|---|---|---|
| Jang et al. [47] | 2018 | 2-year survival rate | Neoadjuvant GEM + RT (45 Gy) | 27 | 63% (51.8%) | 22.0 mth |
| US | 23 | 78.3% (26.1%) | 19.5 mth | |||
| Yamaguchi et al. (NUPAT-01) [49] | 2022 | R0 resection rate | Neoadjuvant FOLFIRINOX | 26 | 88.5% (73.1%) | No data available 3-year overall survival rate: 62.6% |
| Neoadjuvant GEM/nab-PTX | 25 | 80% (56%) | No data available 3-year overall survival rate: 55.1% | |||
| Katz et al. (ALLIANCE A021501) [50] | 2022 | 18-month overall survival rate | Neoadjuvant mFOLFIRINOX | 65 | 49% (43%) | 29.8 mth |
| Neoadjuvant FOLFIRINOX + RT (33–40 Gy) | 55 | 35% (25.5%) | 17.1 mth | |||
| Ghaneh et al. (ESPAC-5) [46] | 2023 | Resection rate | US | 31 | 68% (9.7%) | No data available 1-year overall survival rate: 39% |
| Neoadjuvant FOLFIRINOX | 20 | 55% (10%) | No data available. 1-year overall survival rate: 84% | |||
| Neoadjuvant GemCap | 19 | 57.9% (10.5%) | No data available. 1-year overall survival rate: 78% | |||
| Neoadjuvant Cap + RT (50.4 Gy) | 16 | 50% (18.5%) | No data available 1-year overall survival rate: 60% |
| Author | Year | Primary Outcome | Groups | Number of Patients | Resection Rate (R0 Resection Rate) | Median Overall Survival |
|---|---|---|---|---|---|---|
| Versteijne et al. (PREOPANC-1) [28] | 2021 | OS | Neoadjuvant GEM + RT (36 Gy) | 119 | 61% (41%) | 15.7 mth |
| US | 127 | 72% (28%) | 14.3 mth | |||
| Koerkamp et al. (PREOPANC-2) [51] | 2023 | OS | Neoadjuvant FOLFIRINOX | 188 | 77% (No data available about R0 resection rate) | 21.9 mth |
| Neoadjuvant GEM + RT (36 Gy) | 187 | 75% (No data available about R0 resection rate) | 21.7 mth | |||
| Yamada et al. (CSGO-HBP-015) [52] | 2024 | 2-year progression-free survival | Neoadjuvant GEM/nab-PTX | 48 | 84% (79.2%) | 42 mth |
| Neoadjuvant GEM + S1 | 46 | 72% (65.2%) | 22 mth |
6. Neoadjuvant Chemotherapy Strategies in PDAC
7. The Role of Neoadjuvant Chemoradiotherapy
8. Challenges and Risks Associated with NAT
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AHPBA/SSO/SSAT | Americas Hepato-Pancreato-Biliary Association, the Society of Surgical Oncology and the Society for Surgery of the Alimentary Tract |
| ASCO | American Society of Clinical Oncology |
| BR-PDAC | borderline resectable pancreatic ductal adenocarcinoma |
| CA | Celiac Axis |
| CHA | Common Hepatic Artery |
| CK5 | cytokeratin 5 |
| CRT | chemoradiotherapy |
| CT | computer tomography |
| DFS | disease-free survival |
| ECOG | Eastern Cooperative Oncology Group Performance Status |
| ESMO | European Society for Medical Oncology |
| FOLFIRINOX | folinic acid (leucovorin), fluorouracil, irinotecan, oxaliplatin |
| FOLFOX | folinic acid (leucovorin), fluorouracil, oxaliplatin |
| FOLFOX6 | folinic acid (leucovorin), fluorouracil, oxaliplatin (dose-modified 6-cycle regimen) |
| GEM | gemcitabine |
| GEM/nab-PTX | gemcitabine plus nab-paclitaxel |
| GEM/S-1 | gemcitabine plus S-1 (tegafur/gimeracil/oteracil) |
| IMRT | intensity-modulated radiotherapy |
| IAP | International Association of Pancreatology |
| ITT | intention-to-treat population |
| IVC | Inferior Vena Cava |
| JPS | Japan Pancreas Society |
| JSHBPS | Japanese Society of Hepato-Biliary-Pancreatic Surgery |
| MDACC | MD Anderson Cancer Center |
| MRI | magnetic resonance imaging |
| mFOLFIRINOX | modified FOLFIRINOX |
| NALIRIFOX | liposomal irinotecan, fluorouracil, leucovorin, oxaliplatin |
| NAT | neoadjuvant treatment |
| NCCN | National Comprehensive Cancer Network |
| OS | overall survival |
| PFS | progression-free survival |
| PDAC | pancreatic ductal adenocarcinoma |
| PET-CT | positron emission tomography |
| PHA | Proper Hepatic Artery |
| PV | Portal Vein |
| R-PDAC | resectable pancreatic ductal adenocarcinoma |
| RT | Radiotherapy |
| SMA | Superior Mesenteric Artery |
| SMV | Superior Mesenteric Vein |
| US | upfront surgery |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921, Erratum in Cancer Res. 2014, 74, 4006. [Google Scholar] [CrossRef] [PubMed]
- Surveillance, Epidemiology, and End Results Program. SEER. Available online: https://seer.cancer.gov/index.html (accessed on 25 September 2025).
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma (Version 1.2025). NCCN. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455 (accessed on 18 January 2025).
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.M.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.T.; Zhu, L.; Feng, X.L.; Yang, L.; Chen, G.W.; Jiang, Y.; Huang, T.F.; Wang, H.Y.; Li, F. Advances in neoadjuvant therapy for pancreatic cancer: Current trends and future directions. World J. Clin. Oncol. 2025, 16, 105849. [Google Scholar] [CrossRef]
- Springfeld, C.; Ferrone, C.R.; Katz, M.H.G.; Philip, P.A.; Hong, T.S.; Hackert, T.; Büchler, M.W.; Neoptolemos, J. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 2023, 20, 318–337. [Google Scholar] [CrossRef]
- Torphy, R.J.; Fujiwara, Y.; Schulick, R.D. Pancreatic cancer treatment: Better, but a long way to go. Surg. Today 2020, 50, 1117–1125. [Google Scholar] [CrossRef]
- Varadhachary, G.R.; Tamm, E.P.; Abbruzzese, J.L.; Xiong, H.Q.; Crane, C.H.; Wang, H.; Lee, J.E.; Pisters, P.W.T.; Evans, D.B.; Wolff, R.A. Borderline resectable pancreatic cancer: Definitions, management, and role of preoperative therapy. Ann. Surg. Oncol. 2006, 13, 1035–1046. [Google Scholar] [CrossRef]
- Okusaka, T.; Nakamura, M.; Yoshida, M.; Kitano, M.; Ito, Y.; Mizuno, N.; Hanada, K.; Ozaka, M.; Morizane, C.; Takeyama, Y. Clinical Practice Guidelines for Pancreatic Cancer 2022 from the Japan Pancreas Society: A synopsis. Int. J. Clin. Oncol. 2023, 28, 493–511. [Google Scholar] [CrossRef]
- Callery, M.P.; Chang, K.J.; Fishman, E.K.; Talamonti, M.S.; William Traverso, L.; Linehan, D.C. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: Expert consensus statement. Ann. Surg. Oncol. 2009, 16, 1727–1733. [Google Scholar]
- Wong, J.C.; Lu, D.S.K. Staging of pancreatic adenocarcinoma by imaging studies. Clin. Gastroenterol. Hepatol. 2008, 6, 1301–1308. [Google Scholar] [CrossRef]
- Theijse, R.T.; Stoop, T.F.; Janssen, Q.P.; Prakash, L.R.; Katz, M.H.G.; Doppenberg, D.; Tzeng, C.W.D.; Wei, A.C.; Zureikat, A.H.; Koerkamp, B.G.; et al. Impact of a non-therapeutic laparotomy in patients with locally advanced pancreatic cancer treated with induction (m)FOLFIRINOX: Trans-Atlantic Pancreatic Surgery (TAPS) Consortium study. Br. J. Surg. 2024, 111, znae033. [Google Scholar] [CrossRef] [PubMed]
- Varadhachary, G.R.; Tamm, E.P.; Crane, C.; Evans, D.B.; Wolff, R.A. Borderline resectable pancreatic cancer. Curr. Treat. Options Gastroenterol. 2005, 8, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Isaji, S.; Mizuno, S.; Windsor, J.A.; Bassi, C.; Fernández-Del Castillo, C.; Hackert, T.; Hayasaki, A.; Katz, M.H.G.; Kim, S.-W.; Kishiwada, M.; et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018, 18, 2–11. [Google Scholar] [CrossRef]
- Oba, A.; Chiaro, M.D.; Satoi, S.; Kim, S.W.; Takahashi, H.; Yu, J.; Hioki, M.; Tanaka, M.; Kato, Y.; Ariake, K.; et al. New criteria of resectability for pancreatic cancer: A position paper by the Japanese Society of Hepato-Biliary-Pancreatic Surgery (JSHBPS). J. Hepato-Biliary-Pancreat. Sci. 2022, 29, 725–731. [Google Scholar] [CrossRef]
- Golan, T.; Barenboim, A.; Lahat, G.; Nachmany, I.; Goykhman, Y.; Shacham-Shmueli, E.; Halpern, N.; Brazowski, E.; Geva, R.; Wolf, I.; et al. Increased Rate of Complete Pathologic Response After Neoadjuvant FOLFIRINOX for BRCA Mutation Carriers with Borderline Resectable Pancreatic Cancer. Ann. Surg. Oncol. 2020, 27, 3963–3970. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Talar-Wojnarowska, R.; Dąbrowski, A.; Degowska, M.; Durlik, M.; Gąsiorowska, A.; Głuszek, S.; Jurkowska, G.; Kaczka, A.; Lampe, P.; et al. Diagnostic and therapeutic recommendations in pancreatic ductal adenocarcinoma. Recommendations of the Working Group of the Polish Pancreatic Club. Prz. Gastroenterol. 2019, 14, 1–18. [Google Scholar] [CrossRef]
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Gillmore, R.; Cunningham, D.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Kim, J. Cell Dissemination in Pancreatic Cancer. Cells 2022, 11, 3683. [Google Scholar] [CrossRef]
- Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012, 148, 349–361. [Google Scholar] [CrossRef]
- Puleo, A.; Malla, M.; Boone, B.A. Defining the Optimal Duration of Neoadjuvant Therapy for Pancreatic Ductal Adenocarcinoma: Time for a Personalized Approach? Pancreas 2022, 51, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, O.; Kulbacka, J.; Saczko, J. Adjuvant, neoadjuvant, and experimental regimens in overcoming pancreatic ductal adenocarcinoma. Prz. Gastroenterol. 2016, 11, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; McKernin, S.E.; Berlin, J.; Hong, T.S.; Maitra, A.; Moravek, C.; Mumber, M.; Schulick, R.; Zeh, H.J.; Katz, M.H.G. Potentially Curable Pancreatic Adenocarcinoma: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2019, 37, 2082–2088. [Google Scholar] [CrossRef]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef]
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef]
- Labori, K.J.; Bratlie, S.O.; Andersson, B.; Angelsen, J.H.; Biörserud, C.; Björnsson, B.; Bringeland, E.A.; Elander, N.; Garresori, H.; Grønbech, J.E.; et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 205–217. [Google Scholar] [CrossRef]
- Seufferlein, T.; Uhl, W.; Kornmann, M.; Algül, H.; Friess, H.; König, A.; Ghadimi, M.; Gallmeier, E.; Bartsch, D.K.; Lutz, M.P.; et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX)-a randomized phase II trial of the AIO pancreatic cancer group. Ann. Oncol. 2023, 34, 91–100. [Google Scholar] [CrossRef]
- Büchler, M.W.; Neoptolemos, J.P. The NEONAX study. Ann. Oncol. 2023, 34, 442–443. [Google Scholar] [CrossRef]
- Seufferlein, T.; Uhl, W.; Ettrich, T.J.; NEONAX Study Group. Reply to the Letter to the Editor “The Neonax study” by M. W. Büchler and J. Neoptolemos. Ann. Oncol. 2023, 34, 443–445. [Google Scholar] [CrossRef]
- Reni, M.; Balzano, G.; Zanon, S.; Zerbi, A.; Rimassa, L.; Castoldi, R.; Doglioni, C.; Pinelli, D.; Mosconi, S.; Chiaravalli, M.; et al. Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): A randomised, open-label, phase 2-3 trial. Lancet Gastroenterol. Hepatol. 2018, 3, 413–423. [Google Scholar] [CrossRef]
- Mokdad, A.A.; Minter, R.M.; Zhu, H.; Augustine, M.M.; Porembka, M.R.; Wang, S.C.; Yopp, A.C.; Mansour, J.C.; Choti, M.A.; Polanco, P.M. Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis. J. Clin. Oncol. 2017, 35, 515–522. [Google Scholar] [CrossRef]
- Shin, K.I.; Yoon, M.S.; Kim, J.H.; Jang, W.J.; Leem, G.; Jo, J.H.; Chung, M.J.; Park, J.Y.; Park, S.W.; Hwang, H.K.; et al. Long-Term Outcomes of Neoadjuvant Therapy Versus Upfront Surgery for Resectable Pancreatic Ductal Adenocarcinoma. Cancer Med. 2024, 13, e70363. [Google Scholar] [CrossRef]
- Rangelova, E.; Stoop, T.F.; van Ramshorst, T.M.E.; Ali, M.; van Bodegraven, E.A.; Javed, A.A.; Hashimoto, D.; Steyerberg, E.; Banerjee, A.; Jain, A.; et al. The impact of neoadjuvant therapy in patients with left-sided resectable pancreatic cancer: An international multicenter study. Ann. Oncol. 2025, 36, 529–542. [Google Scholar] [CrossRef]
- Shimane, G.; Kitago, M.; Yagi, H.; Abe, Y.; Hasegawa, Y.; Hori, S.; Tanaka, M.; Tsuzaki, J.; Yokoyama, Y.; Masugi, Y.; et al. Clinical Impact of Neoadjuvant Therapy for Resectable Pancreatic Ductal Adenocarcinoma: A Single-Center Retrospective Study. Ann. Surg. Oncol. 2025, 32, 2830–2840. [Google Scholar] [CrossRef]
- Shimane, G.; Kitago, M.; Kitagawa, Y. ASO Author Reflections: Indication Criteria for Neoadjuvant Therapy for Resectable Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2025, 32, 2866–2867. [Google Scholar] [CrossRef]
- Palmer, D.H.; Stocken, D.D.; Hewitt, H.; Markham, C.E.; Hassan, A.B.; Johnson, P.J.; Buckels, J.A.C.; Bramhall, S.R. A randomized phase 2 trial of neoadjuvant chemotherapy in resectable pancreatic cancer: Gemcitabine alone versus gemcitabine combined with cisplatin. Ann. Surg. Oncol. 2007, 14, 2088–2096. [Google Scholar] [CrossRef] [PubMed]
- Golcher, H.; Brunner, T.B.; Witzigmann, H.; Marti, L.; Bechstein, W.O.; Bruns, C.; Jungnickel, H.; Schreiber, S.; Grabenbauer, G.G.; Meyer, T.; et al. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer. Strahlenther. Onkol. 2015, 191, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Casadei, R.; Di Marco, M.; Ricci, C.; Santini, D.; Serra, C.; Calculli, L.; D’Ambra, M.; Guido, A.; Morselli-Labate, A.M.; Minni, F. Neoadjuvant Chemoradiotherapy and Surgery Versus Surgery Alone in Resectable Pancreatic Cancer: A Single-Center Prospective, Randomized, Controlled Trial Which Failed to Achieve Accrual Targets. J. Gastrointest. Surg. 2015, 19, 1802–1812. [Google Scholar] [CrossRef] [PubMed]
- Unno, M.; Motoi, F.; Matsuyama, Y.; Satoi, S.; Matsumoto, I.; Aosasa, S.; Shirakawa, H.; Wada, K.; Fujii, T.; Yoshitomi, H.; et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP-05). J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef]
- Sohal, D.P.S.; Duong, M.; Ahmad, S.A.; Gandhi, N.S.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L., 3rd; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. Efficacy of Perioperative Chemotherapy for Resectable Pancreatic Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Toyama, H.; Fukutomi, A.; Asakura, H.; Takeda, Y.; Yamamoto, K.; Hirano, S.; Satoi, S.; Matsumoto, I.; Takahashi, S.; et al. Randomized phase II trial of chemoradiotherapy with S-1 versus combination chemotherapy with gemcitabine and S-1 as neoadjuvant treatment for resectable pancreatic cancer (JASPAC 04). J. Hepatobiliary Pancreat. Sci. 2023, 30, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Zou, R.Q.; Dai, Y.S.; Li, F.Y.; Hu, H.J. Comparison of the upfront surgery and neoadjuvant therapy in resectable and borderline resectable pancreatic cancer: An updated systematic review and meta-analysis. Updates Surg. 2024, 76, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ghaneh, P.; Palmer, D.; Cicconi, S.; Jackson, R.; Halloran, C.M.; Rawcliffe, C.; Sripadam, R.; Mukherjee, S.; Soonawalla, Z.; Wadsley, J.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): A four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.-Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients with Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef]
- Jang, Y.H.; Lee, R.R.; Park, Y. Statistical cure fraction in patients with borderline resectable pancreatic ductal adenocarcinoma undergoing neoadjuvant therapy followed by radical resection: A secondary analysis of reconstructed individual patient data. Ann. Surg. Treat. Res. 2025, 109, 162–168. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Yokoyama, Y.; Fujii, T.; Yamada, S.; Takami, H.; Kawashima, H.; Ohno, E.; Ishikawa, T.; Maeda, O.; Ogawa, H.; et al. Results of a Phase II Study on the Use of Neoadjuvant Chemotherapy (FOLFIRINOX or GEM/nab-PTX) for Borderline-resectable Pancreatic Cancer (NUPAT-01). Ann. Surg. 2022, 275, 1043–1049. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.; Herman, J.M.; Chuong, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.; Schwartz, L.; Behr, S.; et al. Efficacy of Preoperative mFOLFIRINOX vs mFOLFIRINOX Plus Hypofractionated Radiotherapy for Borderline Resectable Adenocarcinoma of the Pancreas: The A021501 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1263–1270. [Google Scholar] [CrossRef]
- Groot Koerkamp, B.; Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Haberkorn, B.C.M.; de Hingh, I.H.J.T.; Karsten, T.M.; van der Kolk, M.B.; et al. LBA83 Neoadjuvant chemotherapy with FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy for borderline resectable and resectable pancreatic cancer (PREOPANC-2): A multicenter randomized controlled trial. Ann. Oncol. 2023, 34, S1323. [Google Scholar] [CrossRef]
- Yamada, D.; Kobayashi, S.; Takahashi, H.; Iwagami, Y.; Akita, H.; Asukai, K.; Shimizu, J.; Yamada, T.; Tanemura, M.; Yokoyama, S.; et al. Results of a Randomized Clinical Study of Gemcitabine Plus Nab-Paclitaxel Versus Gemcitabine Plus S-1 as Neoadjuvant Chemotherapy for Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma (RCT, CSGO-HBP-015). Ann. Surg. Oncol. 2024, 31, 4621–4633. [Google Scholar] [CrossRef]
- Schwarz, L.; Bachet, J.B.; Meurisse, A.; Bouché, O.; Assenat, E.; Piessen, G.; Hammel, P.; Regenet, N.; Taieb, J.; Turrini, O.; et al. Neoadjuvant FOLF(IRIN)OX Chemotherapy for Resectable Pancreatic Adenocarcinoma: A Multicenter Randomized Noncomparative Phase II Trial (PANACHE01 FRENCH08 PRODIGE48 study). J. Clin. Oncol. 2025, 43, 1984–1996. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.V.; Kim, J.; Klinz, S.G.; Paz, N.; Cain, J.; Drummond, D.C.; Nielsen, U.B.; Fitzgerald, J.B. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 2014, 74, 7003–7013. [Google Scholar] [CrossRef] [PubMed]
- Melisi, D.; Zecchetto, C.; Merz, V.; Malleo, G.; Landoni, L.; Quinzii, A.; Casalino, S.; Fazzini, F.; Gaule, M.; Pesoni, C.; et al. Perioperative NALIRIFOX in patients with resectable pancreatic ductal adenocarcinoma: The open-label, multicenter, phase II nITRO trial. Eur. J. Cancer 2024, 196, 113430. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Tao, Y.; Zhang, T. Is neoadjuvant chemoradiotherapy for pancreatic cancer beneficial: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 979390. [Google Scholar] [CrossRef]
- Janssen, Q.P.; van Dam, J.L.; van Bekkum, M.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Bouwense, S.A.W.; Brouwer-Hol, L.; Bruynzeel, A.M.E.; Busch, O.R.; et al. Neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy in resectable and borderline resectable pancreatic cancer (PREOPANC-2): A multicentre, open-label, phase 3 randomised trial. Lancet Oncol. 2025, 26, 1346–1356. [Google Scholar] [CrossRef]
- Hill, C.; Sehgal, S.; Fu, W.; Hu, C.; Reddy, A.; Thompson, E.; Hacker-Prietz, A.; Le, D.; De Jesus-Acosta, A.; Lee, V.; et al. High local failure rates despite high margin-negative resection rates in a cohort of borderline resectable and locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy following multi-agent chemotherapy. Cancer Med. 2022, 11, 1659–1668. [Google Scholar] [CrossRef]
- Verschuren, P.; Christiaens, M.; Oldenburger, E. Hemostatic radiotherapy: A narrative review of the literature. Ann. Palliat. Med. 2024, 13, 1114–1132. [Google Scholar] [CrossRef]
- Nagakawa, Y.; Hosokawa, Y.; Nakayama, H.; Sahara, Y.; Takishita, C.; Nakajima, T.; Hijikata, Y.; Kasuya, K.; Katsumata, K.; Tokuuye, K.; et al. A phase II trial of neoadjuvant chemoradiotherapy with intensity-modulated radiotherapy combined with gemcitabine and S-1 for borderline-resectable pancreatic cancer with arterial involvement. Cancer Chemother. Pharmacol. 2017, 79, 951–957. [Google Scholar] [CrossRef]
- Tello Valverde, C.P.; Ebrahimi, G.; Sprangers, M.A.; Pateras, K.; Bruynzeel, A.M.E.; Jacobs, M.; Wilmink, J.W.; Besselink, M.G.; Crezee, H.; van Tienhoven, G.; et al. Impact of Short-Course Palliative Radiation Therapy on Pancreatic Cancer-Related Pain: Prospective Phase 2 Nonrandomized PAINPANC Trial. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 352–361. [Google Scholar] [CrossRef]
- Snyder, R.A.; Zemla, T.J.; Shi, Q.; Segovia, D.; Ahmad, S.A.; O’Reilly, E.M.; Herman, J.M.; Katz, M.H.G. Postoperative Adverse Events Following Neoadjuvant Therapy and Surgery for Borderline Resectable Pancreatic Cancer in a Phase 2 Clinical Trial (Alliance A021501). Ann. Surg. Oncol. 2024, 31, 7033–7042. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.C.; Wismans, L.V.; Suurmeijer, J.A.; Besselink, M.G.; de Wilde, R.F.; Groot Koerkamp, B.; van Eijck, C.H.J. The effect of preoperative chemotherapy and chemoradiotherapy on pancreatic fistula and other surgical complications after pancreatic resection: A systematic review and meta-analysis of comparative studies. HPB 2021, 23, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Søreide, K.; Larsson, P.; Pandanaboyana, S. Surgical Complications After Neoadjuvant Treatment for Borderline Resectable Pancreatic Cancer: From Benchmarks to Randomized Clinical Trials. Ann. Surg. Oncol. 2024, 31, 8481–8484. [Google Scholar] [CrossRef] [PubMed]
- Fromer, M.W.; Mouw, T.J.; Scoggins, C.R.; Egger, M.E.; Philips, P.; McMasters, K.M.; Martin, R.C.G., 2nd. Barriers to resection following neoadjuvant chemotherapy for resectable pancreatic adenocarcinoma: A national and local perspective. J. Surg. Oncol. 2024, 130, 284–292. [Google Scholar] [CrossRef]
- Lee, S.H.; Hwang, D.W.; Yoo, C.; Kim, K.P.; Kang, S.; Jeong, J.H.; Oh, D.; Song, T.J.; Lee, S.S.; Park, D.H.; et al. Survival Benefit of Adjuvant Chemotherapy in Patients with Pancreatic Ductal Adenocarcinoma Who Underwent Surgery Following Neoadjuvant FOLFIRINOX. Cancer Res. Treat. 2023, 55, 956–968. [Google Scholar] [CrossRef]
- van Dam, J.L.; Janssen, Q.P.; Besselink, M.G.; Homs, M.Y.V.; van Santvoort, H.C.; van Tienhoven, G.; de Wilde, R.F.; Wilmink, J.W.; van Eijck, C.H.J.; Groot Koerkamp, B.; et al. Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: A meta-analysis of randomised controlled trials. Eur. J. Cancer 2022, 160, 140–149. [Google Scholar] [CrossRef]
- Heger, U.; Sun, H.; Hinz, U.; Klaiber, U.; Tanaka, M.; Liu, B.; Sachsenmaier, M.; Springfeld, C.; Michalski, C.W.; Büchler, M.W.; et al. Induction Chemotherapy in pancreatic cancer: CA 19-9 may predict resectability and survival. HPB 2020, 22, 224–232. [Google Scholar] [CrossRef]
- Stoop, T.F.; Oba, A.; Wu, Y.H.A.; Beaty, L.E.; Colborn, K.L.; Janssen, B.V.; Al-Musawi, M.H.; Franco, S.R.; Sugawara, T.; Franklin, O.; et al. Pathological Complete Response in Patients with Resected Pancreatic Adenocarcinoma After Preoperative Chemotherapy. JAMA Netw. Open 2024, 7, e2417625. [Google Scholar] [CrossRef]
- Luo, G.; Guo, M.; Jin, K.; Liu, Z.; Liu, C.; Cheng, H.; Lu, Y.; Long, J.; Liu, L.; Xu, J.; et al. Optimize CA19-9 in detecting pancreatic cancer by Lewis and Secretor genotyping. Pancreatology 2016, 16, 1057–1062. [Google Scholar] [CrossRef]
- Truty, M.J.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Cleary, S.P.; Graham, R.P.; Goenka, A.H.; Hallemeier, C.L.; Haddock, M.G.; Harmsen, W.S.; et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Ann. Surg. 2021, 273, 341–349. [Google Scholar] [CrossRef]
- Gillson, J.E.; Byeon, S.; Chou, A.; Maloney, S.; Pavlakis, N.; Clarke, S.J.; Chan, D.L.; Diakos, C.I.; Gill, A.J.; Samra, J.S.; et al. Promising biomarker panel to monitor therapeutic efficacy of neoadjuvant chemotherapy in pancreatic cancer patients. Eur. J. Clin. Investig. 2025, 55, e14341. [Google Scholar] [CrossRef]
- Abdelrahman, A.M.; Goenka, A.H.; Alva-Ruiz, R.; Yonkus, J.A.; Leiting, J.L.; Graham, R.P.; Merrell, K.W.; Thiels, C.A.; Hallemeier, C.L.; Warner, S.G.; et al. FDG-PET Predicts Neoadjuvant Therapy Response and Survival in Borderline Resectable/Locally Advanced Pancreatic Adenocarcinoma. J. Natl. Compr. Cancer Netw. 2022, 20, 1023–1032.e3. [Google Scholar] [CrossRef]
- Kirchweger, P.; Doleschal, B.; Rumpold, H.; Wundsam, H.; Biebl, M. Personalized decision making of neoadjuvant chemotherapy vs. upfront surgery in pancreatic cancer by a simple blood collection? Memo-Mag. Eur. Med. Oncol. 2025, 18, 49–52. [Google Scholar] [CrossRef]
- Panda, A.; Garg, I.; Truty, M.J.; Kline, T.L.; Johnson, M.P.; Ehman, E.C.; Suman, G.; Anaam, D.A.; Kemp, B.J.; Johnson, G.B.; et al. Borderline Resectable and Locally Advanced Pancreatic Cancer: FDG PET/MRI and CT Tumor Metrics for Assessment of Pathologic Response to Neoadjuvant Therapy and Prediction of Survival. Am. J. Roentgenol. 2021, 217, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Botta, G.P.; Abdelrahim, M.; Drengler, R.L.; Aushev, V.N.; Esmail, A.; Laliotis, G.; Brewer, C.M.; George, G.V.; Abbate, S.M.; Chandana, S.R.; et al. Association of personalized and tumor-informed ctDNA with patient survival outcomes in pancreatic adenocarcinoma. Oncologist 2024, 29, 859–869, Erratum in Oncologist 2024, 29, e1630. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, G.M.; Grünwald, B.T.; Jang, G.H.; Masoomian, M.; Picardo, S.; Grant, R.C.; Denroche, R.E.; Zhang, A.; Wang, Y.; Lam, B.; et al. GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 4901–4910, Erratum in Clin. Cancer Res. 2022, 28, 2715. [Google Scholar] [CrossRef] [PubMed]
- Kokumai, T.; Omori, Y.; Ishida, M.; Ohtsuka, H.; Mizuma, M.; Nakagawa, K.; Maeda, C.; Ono, Y.; Mizukami, Y.; Miura, S.; et al. GATA6 and CK5 Stratify the Survival of Patients with Pancreatic Cancer Undergoing Neoadjuvant Chemotherapy. Mod. Pathol. 2023, 36, 100102. [Google Scholar] [CrossRef]
- Masugi, Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers 2022, 14, 3293. [Google Scholar] [CrossRef]
- Olaoba, O.T.; Yang, M.; Adelusi, T.I.; Maidens, T.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Li, G. Targeted Therapy for Highly Desmoplastic and Immunosuppressive Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers 2024, 16, 1470. [Google Scholar] [CrossRef]
- Mota Reyes, C.; Teller, S.; Muckenhuber, A.; Konukiewitz, B.; Safak, O.; Weichert, W.; Friess, H.; Ceyhan, G.O.; Demir, I.E. Neoadjuvant Therapy Remodels the Pancreatic Cancer Microenvironment via Depletion of Protumorigenic Immune Cells. Clin. Cancer Res. 2020, 26, 220–231. [Google Scholar] [CrossRef]
- Farren, M.R.; Sayegh, L.; Ware, M.B.; Chen, H.R.; Gong, J.; Liang, Y.; Krasinskas, A.; Maithel, S.K.; Zaidi, M.; Sarmiento, J.M.; et al. Immunologic alterations in the pancreatic cancer microenvironment of patients treated with neoadjuvant chemotherapy and radiotherapy. JCI Insight 2020, 5, e130362. [Google Scholar] [CrossRef] [PubMed]
- Dias Costa, A.; Väyrynen, S.A.; Chawla, A.; Zhang, J.; Väyrynen, J.P.; Lau, M.C.; Williams, H.L.; Yuan, C.; Morales-Oyarvide, V.; Elganainy, D.; et al. Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clin. Cancer Res. 2022, 28, 5167–5179. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, S.; Tsuchikawa, T.; Nakamura, T.; Hatanaka, Y.; Hatanaka, K.C.; Sasaki, K.; Ono, M.; Umemoto, K.; Suzuki, T.; Sato, O.; et al. Prognostic relevance of tertiary lymphoid organs following neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma. Cancer Sci. 2019, 110, 1853–1862. [Google Scholar] [CrossRef]
- Zou, X.; Lin, X.; Cheng, H.; Chen, Y.; Wang, R.; Ma, M.; Liu, Y.; Dai, Z.; Tasiheng, Y.; Yan, Y.; et al. Characterization of intratumoral tertiary lymphoid structures in pancreatic ductal adenocarcinoma: Cellular properties and prognostic significance. J. Immunother. Cancer 2023, 11, e006698. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Eguchi, H.; Tomokuni, A.; Tomimaru, Y.; Asaoka, T.; Wada, H.; Hama, N.; Kawamoto, K.; Kobayashi, S.; Marubashi, S.; et al. Pre-treatment neutrophil to lymphocyte ratio as a predictive marker for pathological response to preoperative chemoradiotherapy in pancreatic cancer. Oncol. Lett. 2016, 11, 1560–1566. [Google Scholar] [CrossRef]
- Tewari, N.; Zaitoun, A.M.; Arora, A.; Madhusudan, S.; Ilyas, M.; Lobo, D.N. The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: An immunohistochemical study of tissue microarrays. BMC Cancer 2013, 13, 436. [Google Scholar] [CrossRef]
- Lohneis, P.; Sinn, M.; Bischoff, S.; Jühling, A.; Pelzer, U.; Wislocka, L.; Bahra, M.; Sinn, B.V.; Denkert, C.; Oettle, H.; et al. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur. J. Cancer 2017, 83, 290–301. [Google Scholar] [CrossRef]
- Weiss, S.A.; Wolchok, J.D.; Sznol, M. Immunotherapy of Melanoma: Facts and Hopes. Clin. Cancer Res. 2019, 25, 5191–5201. [Google Scholar] [CrossRef]
- Bahadoram, S.; Davoodi, M.; Hassanzadeh, S.; Bahadoram, M.; Barahman, M.; Mafakher, L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G. Ital. Nefrol. 2022, 39, 2022-vol3. [Google Scholar]
- McLoughlin, K.C.; Brown, Z.J.; Shukla, Y.; Shukla, V. Promise and pitfalls of immune checkpoint inhibitors in hepato-pancreato-biliary malignancies. Discov. Med. 2018, 26, 85–92. [Google Scholar]
- Du, J.; Lu, C.; Mao, L.; Zhu, Y.; Kong, W.; Shen, S.; Tang, M.; Bao, S.; Cheng, H.; Li, G.; et al. PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: A biomolecular exploratory, phase II trial. Cell Rep. Med. 2023, 4, 100972. [Google Scholar] [CrossRef]
- Hewitt, D.B.; Nissen, N.; Hatoum, H.; Musher, B.; Seng, J.; Coveler, A.L.; Al-Rajabi, R.; Yeo, C.J.; Leiby, B.; Banks, J.; et al. A Phase 3 Randomized Clinical Trial of Chemotherapy with or Without Algenpantucel-L (HyperAcute-Pancreas) Immunotherapy in Subjects with Borderline Resectable or Locally Advanced Unresectable Pancreatic Cancer. Ann. Surg. 2022, 275, 45–53. [Google Scholar] [CrossRef]
- Lin, C.; Verma, V.; Lazenby, A.; Ly, Q.P.; Berim, L.D.; Schwarz, J.K.; Madiyalakan, M.; Nicodemus, C.F.; Hollingsworth, M.A.; Meza, J.L.; et al. Phase I/II Trial of Neoadjuvant Oregovomab-based Chemoimmunotherapy Followed by Stereotactic Body Radiotherapy and Nelfinavir for Locally Advanced Pancreatic Adenocarcinoma. Am. J. Clin. Oncol. 2019, 42, 755–760. [Google Scholar] [CrossRef]
- Byrne, K.T.; Betts, C.B.; Mick, R.; Sivagnanam, S.; Bajor, D.L.; Laheru, D.A.; Chiorean, E.G.; O’Hara, M.H.; Liudahl, S.M.; Newcomb, C.; et al. Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clin. Cancer Res. 2021, 27, 4574–4586. [Google Scholar] [CrossRef]
- Chick, R.C.; Gunderson, A.J.; Rahman, S.; Cloyd, J.M. Neoadjuvant Immunotherapy for Localized Pancreatic Cancer: Challenges and Early Results. Cancers 2023, 15, 3967. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groszewska, J.; Romaniuk, M.; Małecka-Wojciesko, E. Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer. Int. J. Transl. Med. 2025, 5, 55. https://doi.org/10.3390/ijtm5040055
Groszewska J, Romaniuk M, Małecka-Wojciesko E. Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer. International Journal of Translational Medicine. 2025; 5(4):55. https://doi.org/10.3390/ijtm5040055
Chicago/Turabian StyleGroszewska, Julia, Michał Romaniuk, and Ewa Małecka-Wojciesko. 2025. "Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer" International Journal of Translational Medicine 5, no. 4: 55. https://doi.org/10.3390/ijtm5040055
APA StyleGroszewska, J., Romaniuk, M., & Małecka-Wojciesko, E. (2025). Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer. International Journal of Translational Medicine, 5(4), 55. https://doi.org/10.3390/ijtm5040055

