Improved Prognostic Accuracy of NEWS2 Score with Triage Data in Adults with Bacterial Sepsis: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.; Sevransky, J.E.; Sprung, C.; Douglas, I.S.; Jaeschke, R.; et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Akesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Whittaker, S.A.; Fuchs, B.D.; Gaieski, D.F.; Christie, J.D. Epidemiology and outcomes in patients with severe sepsis admitted to the hospital wards. J. Crit. Care 2015, 30, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef]
- Diao, S.T.; Dong, R.; Peng, J.M.; Chen, Y.; Li, S.; He, S.H.; Wang, Y.F.; Du, B.; Weng, L. China Critical Care Clinical Trials Group (CCCCTG). Validation of an ICD-Based Algorithm to Identify Sepsis: A Retrospective Study. Risk Manag. Healthc. Policy 2023, 16, 2249–2257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.E.; Jones, A.R.; Donnelly, J.P. Revised National estimates of adult emergency department visits for sepsis in the United States. Crit. Care Med. 2017, 45, 1443–1449. [Google Scholar] [CrossRef]
- Dell’Aquila, P.; Raimondo, P.; Orso, D.; De Luca, P.; Pozzessere, P.; Parisi, C.V.; Bove, T.; Vetrugno, L.; Grasso, S.; Procacci, V. A simple prognostic score based on troponin and presepsin for COVID-19 patients admitted to the emergency department: A single-center pilot study. Acta Biomed. 2021, 92, e2021233. [Google Scholar] [CrossRef]
- Santacroce, L.; Charitos, I.A.; Carretta, D.M.; De Nitto, E.; Lovero, R. The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J. Mol. Med. 2021, 99, 93–106. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Zhang, D.; Xu, J.; Dai, H. SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet 2020, 395, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am. J. Respir. Crit. Care Med. 2017, 195, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Mellhammar, L.; Linder, A.; Tverring, J.; Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. NEWS2 is superior to qSOFA in detecting sepsis with organ dysfunction in the emergency department. J. Clin. Med. 2019, 8, 1128. [Google Scholar] [CrossRef]
- Redfern, O.C.; Smith, G.B.F.; Prytherch, D.R.; Meredith, P.; Inada-Kim, M.F.; Schmidt, P.E.M. A comparison of the quick sequential (sepsis-related) organ failure assessment score and the National early warning score in Non-ICU patients with/without infection. Crit. Care Med. 2018, 46, 1923–1933. [Google Scholar] [CrossRef]
- Goulden, R.; Hoyle, M.-C.; Monis, J.; Railton, D.; Riley, V.; Martin, P.; Martina, R.; Nsutebu, E. qSOFA, SIRS and news for predicting inhospital mortality and ICU admission in emergency admissions treated as sepsis. Emerg. Med. J. 2018, 35, 345–349. [Google Scholar] [CrossRef]
- Angus, D.C.; Seymour, C.W.; Coopersmith, M.; Deutschman, S.; Klompas, M.; Levy, M.M.; Martin, G.S.; Osborn, T.M.; Rhee, C. A Framework for the Development and Interpretation of Different Sepsis Definitions and Clinical Criteria. Crit. Care Med. 2016, 44, e113–e121. [Google Scholar] [CrossRef]
- Sze, S.; Pan, D.; Williams, C.M.L.; Wong, N.; Sahota, A.; Bell, D.; Tang, J.W.; Wiselka, M.; Stephenson, I. Manish Pareek Letter to the Editor: Variability but not admission or trends in NEWS2 score predicts clinical outcome in elderly hospitalised patients with COVID-19. J. Infect. 2021, 82, 159–198. [Google Scholar] [CrossRef]
- Myrstad, M.; Ihle-Hansen, H.; Tveita, A.A.; Andersen, E.L.; Nygård, S.; Tveit, A.; Berge, T. National Early Warning Score 2 (NEWS2) on admission predicts severe disease and inhospital mortality from COVID-19—A prospective cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 66. [Google Scholar] [CrossRef]
- Kibe, S.; Adams, K.; Barlow, G. Diagnostic and prognostic biomarkers of sepsis in critical care. J. Antimicrob. Chemother. 2011, 66 (Suppl. S2), ii33–ii40. [Google Scholar] [CrossRef]
- Larsen, F.F.; Petersen, J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 2017, 45, 46–50. [Google Scholar] [CrossRef] [PubMed]
- De Castro, R.; Ruiz, D.; Lavín, B.A.; Lamsfus, J.Á.; Vázquez, L.; Montalban, C.; Marcano, G.; Sarabia, R.; Paz-Zulueta, M.; Blanco, C.; et al. Cortisol and adrenal androgens as independent predictors of mortality in septic patients. PLoS ONE 2019, 14, e0214312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Qiu, C.; Yang, L.; Zhang, Z.; Zhang, Q.; Wang, B.; Wang, X. GPR18 expression on PMNs as biomarker for outcome in patient with sepsis. Life Sci. 2019, 217, 49–56. [Google Scholar] [CrossRef]
- Baldirà, J.; Ruiz-Rodríguez, J.C.; Wilson, D.C.; Ruiz-Sanmartin, A.; Cortes, A.; Chiscano, L.; Ferrer-Costa, R.; Comas, I.; Larrosa, N.; Fàbrega, A.; et al. Biomarkers and clinical scores to aid the identification of disease severity and intensive care requirement following activation of an in-hospital sepsis code. Ann. Intensive Care 2020, 10, 7. [Google Scholar] [CrossRef]
- Di Serio, F.; Lovero, R.; D’Agostino, D.; Nisi, L.; Miragliotta, G.; Contino, R.; Ciccone, M.M.; Santacroce, L. Evaluation of procalcitonin, vitamin d and C-reactive protein levels in septic patients, with positive emocoltures. Our preliminary experience. Acta Med. Mediterr. 2016, 32, 1911–1914. [Google Scholar] [CrossRef]
- de Guadiana Romualdo, L.G.; Esteban Torrella, P.; Rebollo Acebes, S.; Albaladejo Otón, M.D.; Jiménez Sánchez, R.; Hernando Holgado, A.; Jiménez Santos, E.; Ortín Freire, A. Diagnostic accuracy of presepsin (sCD14-ST) as a biomarker of infection and sepsis in the emergency department. Clin. Chim. Acta 2017, 464, 6–11. [Google Scholar] [CrossRef]
- Gnoni, A.; De Nitto, E.; Scacco, S.; Santacroce, L.; Palese, L.L. A New Look at the Structures of Old Sepsis Actors by Exploratory Data Analysis Tools. Antibiotics 2019, 8, 225. [Google Scholar] [CrossRef]
- Suetrong, B.; Walley, K.R. Lactic Acidosis in Sepsis: It’s Not All Anaerobic: Implications for Diagnosis and Management. Chest 2016, 149, 252–261. [Google Scholar] [CrossRef]
- Filho, R.R.; Rocha, L.L.; Corrêa, T.D.; Pessoa, C.M.S.; Colombo, G.; Assuncao, M.S.C. Blood lactate levels cutoff and mortality prediction in sepsis-time for a reappraisal? A retrospective cohort study. Shock 2016, 46, 480–485. [Google Scholar] [CrossRef]
- Mikkelsen, M.E.; Miltiades, A.N.; Gaieski, D.F.; Goyal, M.; Fuchs, B.D.; Shah, C.V.; Bellamy, S.L.; Christie, J.D. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit. Care Med. 2009, 37, 1670–1677. [Google Scholar] [CrossRef]
- Scott, H.F.; Brou, L.; Deakyne, S.J.; Kempe, A.; Fairclough, D.L.; Bajaj, L. Association Between Early Lactate Levels and 30-Day Mortality in Clinically Suspected Sepsis in Children. JAMA Pediatr. 2017, 171, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Edelson, D.P.; Snyder, A.; Pettit, N.; Sokol, S.; Barc, C.; Howell, M.D.; Churpek, M.M. Implications of Centers for Medicare & Medicaid Services Severe Sepsis and Septic Shock Early Management Bundle and Initial Lactate Measurement on the Management of Sepsis. Chest J. 2018, 154, 302–308. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Rivers, E.P.; Knoblich, B.P.; Jacobsen, G.; Muzzin, A.; Ressler, J.A.; Tomlanovich, M.C. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit. Care Med. 2004, 32, 1637–1642. [Google Scholar] [CrossRef]
- Jones, A.E.; Shapiro, N.I.; Trzeciak, S.; Arnold, R.C.; Claremont, H.A.; Kline, J.A. Lactate clearance vs. central venous oxygen saturation as goals of early sepsis therapy: A randomized clinical trial. JAMA 2010, 303, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.M.; Lee, J.; Lee, Y.S.; Lee, J.H.; Lim, K.S.; Huh, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y.; Kim, W.Y. Lactate Level Versus Lactate Clearance for Predicting Mortality in Patients With Septic Shock Defined by Sepsis-3. Crit. Care Med. 2018, 46, e489–e495. [Google Scholar] [CrossRef]
- Dezman, Z.D.W.; Comer, A.C.; Smith, G.S.; Hu, P.F.; Mackenzie, C.F.; Scalea, T.M.; Hirshon, J.M. Repeat lactate level predicts mortality better than rate of clearance. Am. J. Emerg. Med. 2018, 36, 2005–2009. [Google Scholar] [CrossRef]
- Lee, S.G.; Song, J.; Park, D.W.; Moon, S.; Cho, H.J.; Kim, J.Y.; Park, J.; Cha, J.H. Prognostic value of lactate levels and lactate clearance in sepsis and septic shock with initial hyperlactatemia: A retrospective cohort study according to the Sepsis-3 definitions. Medicine 2021, 100, e24835. [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Sepsis-associated hyperlactatemia. Crit. Care 2014, 18, 503. [Google Scholar] [CrossRef]
- Levy, B.; Gibot, S.; Franck, P.; Cravoisy, A.; Bollaert, P.E. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: A prospective study. Lancet 2005, 365, 871–875, Erratum in: Lancet 2005, 366, 122. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J. Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 2006, 209 Pt 12, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- van Hall, G.; Strømstad, M.; Rasmussen, P.; Jans, O.; Zaar, M.; Gam, C.; Quistorff, B.; Secher, N.H.; Nielsen, H.B. Blood lactate is an important energy source for the human brain. J. Cerebr. Blood Flow Metab. 2009, 29, 1121–1129. [Google Scholar] [CrossRef]
- van Hall, G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010, 199, 499–508. [Google Scholar] [CrossRef]
- Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022, 52, 2355–2369. [Google Scholar] [CrossRef]
- RCo, P. National Early Warning Score (News) 2. Available online: https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-scoreNEWS2 (accessed on 19 December 2017).
- Cox, D.R. Regression models and life tables (with discussion). J. R. Stat. Soc. Ser. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Berkson, J. Application of the logistic function to bio-assay. J. Am. Stat. Assoc. 1944, 39, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Sonquist, J.A.; Baker, E.L.; Morgan, J.N. Searching for Structure; Institute for Social Research: Ann Arbor, MI, USA, 1973. [Google Scholar]
- Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyt, B.; Herrera, F. Learning from Imbalanced Data Sets; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2012, 28, 92–122. [Google Scholar] [CrossRef]
- Dadeh, A.A.; Kulparat, M. Predictive performance of the NEWS–lactate and NEWS towards mortality or need for critical care among patients with suspicion of sepsis in the emergency department: A prospective observational study. Open Access Emerg. Med. 2022, 14, 619–631. [Google Scholar] [CrossRef]
- Martín-Rodríguez, F.; López-Izquierdo, R.; del Pozo Vegas, C.; Delgado Benito, J.F.; del Brio Ibáñez, P.; Moro Mangas, I.; Conty, J.L.; Villamor, M.A.C. Predictive value of the prehospital NEWS2-L—National Early Warning Score 2 Lactate—for detecting early death after an emergency. Emergencias 2019, 31, 173–179. [Google Scholar]
- Martín-Rodríguez, F.; López-Izquierdo, R.; Delgado Benito, J.F.; Sanz-García, A.; Del Pozo Vegas, C.; Castro Villamor, M.Á.; Martín-Conty, J.L.; Ortega, G.J. Prehospital Point-Of-Care Lactate Increases the Prognostic Accuracy of National Early Warning Score 2 for Early Risk Stratification of Mortality: Results of a Multicenter, Observational Study. J. Clin. Med. 2020, 9, 1156. [Google Scholar] [CrossRef]
- Clar, J.; Oltra, M.R.; Benavent, R.; Pinto, C.; Ruiz, A.; Sanchez, M.T.; Noceda, J.; Redon, J.; Forner, M.J. Prognostic value of diagnostic scales in community-acquired sepsis mortality at an emergency service. Prognosis in community adquired sepsis. BMC Emerg. Med. 2021, 21, 161. [Google Scholar] [CrossRef]
- Küçükceran, K.; Ayrancı, M.K.; Dündar, Z.D.; Keklik, M.; Vatansev, H. The Role of NEWS2 + Lactate + D-Dimer in Predicting Intensive Care Unit Admission and In-Hospital Mortality of COVID-19 Patients. J. Acute Med. 2022, 12, 60–70. [Google Scholar] [CrossRef]
- Charitos, I.A.; Topi, S.; Castellaneta, F.; D’Agostino, D. Current Issues and Perspectives in Patients with Possible Sepsis at Emergency Departments. Antibiotics 2019, 8, 56. [Google Scholar] [CrossRef]
Parameters (Min-Max or %) | Total | Infection | Sepsis | Septic Shock |
---|---|---|---|---|
Number | 557 | 129 | 373 | 55 |
Age, Median (Min–Max) | 75 (16–98) | 64 (16–91) | 78 (18–98) | 80 (44–91) |
Sex, Female (%) | 242 (43.4%) | 57 (44.2%) | 156 (41.8%) | 29 (52.7%) |
Nursing Home (%) | 21 (3.8%) | 1 (0.8%) | 15 (4.0%) | 5 (9.1%) |
Vital Signs | ||||
O2 Therapy (%) | 113 (20.3%) | 7 (5.4%) | 85 (22.8%) | 21 (38.2%) |
O2 Saturation (Min–Max) | 96.1 (70–100) | 97.3 (82–100) | 95.8 (70–100) | 94.7 (70–100) |
Temperature °C | 37.1 (31–41) | 37.3 (35–40) | 37.1 (31–41) | 36.6 (32–39.5) |
SBP (Mmhg) | 117.4 (50–240) | 125.4 (70–210) | 118.5 (60–240) | 90.6 (50–150) |
DBP Mmhg | 68.1 (30–110) | 71.7 (35–100) | 68.7 (30–110) | 54.6 (30–80) |
MHB Mmhg | 84.5 (37–137) | 89.7 (55–137) | 85.4 (40–137) | 66.6 (37–97) |
HR (Hearts Rate) | 95.1 (40–160) | 96.2 (40–150) | 94.5 (40–160) | 97.7 (40–150) |
RR(Breathe/Min) | 25.4 (6–48) | 22.9 (16–40) | 26.1 (16–48) | 27.3 (6–45) |
GCS (Points) | 14.1 (3–15) | 14.9 (13–15) | 14.1 (3–15) | 12.4 (3–15) |
Symptoms | ||||
Fever (%) | 249 (44.7%) | 79 (61.2%) | 156 (41.8%) | 14 (25.5%) |
Respiratory Symptoms (%) | 95 (17.1%) | 16 (12.4%) | 72 (19.3%) | 7 (12.7%) |
Gastrointestinal Symptoms (%) | 24 (4.3%) | 6 (4.7%) | 16 (4.3%) | 2 (3.6%) |
Cardiovascular Symptoms (%) | 45 (8.1%) | 3 (2.3%) | 33 (8.8%) | 9 (16.4%) |
Urinary Symptoms (%) | 22 (3.9%) | 7 (5.4%) | 13 (3.5%) | 2 (3.6%) |
Neurological Symptoms (%) | 85 (15.3%) | 14 (10.9%) | 56 (15.0%) | 15 (27.3%) |
Other (%) | 40 (7.2%) | 11 (8.5%) | 26 (7.0%) | 5 (9.1%) |
Comorbidities | ||||
Cirrhosis (%) | 47 (8.4%) | 6 (4.7%) | 34 (9.1%) | 7 (12.7%) |
Cancer (%) | 89 (16.0%) | 15 (11.6%) | 64 (17.2%) | 10 (18.2%) |
Neuro Alzheimer’s (%) | 86 (14.4%) | 8 (6.2%) | 60 (16.1%) | 18 (32.7%) |
Hemopathy (%) | 47 (7.8%) | 5 (3.9%) | 30 (8.0%) | 7 (12.7%) |
Chronic Renal Failure (%) | 109 (19.5%) | 14 (10.9%) | 80 (21.4%) | 15 (27.3%) |
Hemodialysis (%) | 23 (4.1%) | 7 (5.4%) | 14 (3.8%) | 2 (3.6%) |
Heart Disease (%) | 238 (42.7%) | 31 (24%) | 176 (47.2%) | 31 (56.4%) |
Lung Diseases (%) | 121 (21.7%) | 15 (11.6%) | 89 (23.9%) | 17 (30.9%) |
Diabetes Mellitus (%) | 113 (20.3%) | 17 (13.2%) | 75 (20.1%) | 21 (38.2%) |
Oliguria (%) | 124 (22.3%) | 129 (9.3%) | 373 (20.6%) | 55 (63.6%) |
Terminal Patient (%) | 67 (12.9%) | 5 (3.9%) | 48 (12.9%) | 14 (25.5%) |
Blood Gas Data | ||||
Ph | 7.42 (6.88–7.79) | 7.45 (7.08–7.79) | 7.42 (6.88–7.69) | 7.41 (6.99–7.59) |
PO2 at T0 | 81.4 (30–375) | 90.7 (55–203) | 77.1 (30–340) | 88.1 (37–375) |
P/F | 314.7 (62–850) | 407.5 (229–812) | 301.2 (66–850) | 296.1 (62–517) |
Lactates 0h | 2.5 (0.3–20) | 1.3 (0.3–4.6) | 2.1 (0.5–18.9) | 5.5 (2–20) |
Clinical Score | ||||
SIRS | 2.02 (0–11) | 1.79 (0–11) | 2.05 (0–9) | 2.33 (0–4) |
QSOFA, Points | 1.12 (0–3) | 0.60 (0–2) | 1.15 (0–3) | 2.07 (1–3) |
SOFA, Points | 3.39 (0–14) | 0.59 (0–4) | 3.77 (0–14) | 7.33 (2–12) |
APACHE2, Points | 12.62 (0–41) | 7.17 (0–20) | 13.44 (0–41) | 19.85 (2–39) |
NEWS-2 | 5.13 (0–19) | 3.14 (0–11) | 5.26 (0–19) | 8.95 (3–16) |
Survival | ||||
28-Day Mortality (%) | 137 (24.6%) | 11 (8.5%) | 92 (24.7%) | 34 (61.8%) |
90-Day Mortality (%) | 203 (36.4%) | 22 (17.1%) | 137 (36.7%) | 44 (80.4%) |
Prognostic Factors, Tests and Scores | Deceased | Survivors | Z Sig. | Tau-b | Tau Sig. |
---|---|---|---|---|---|
Age | 77.58 ± 13.90 | 66.44 ± 18.82 | **** | −0.240 | **** |
O2 Saturation | 95.18 ± 5.22 | 96.42 ± 3.89 | * | 0.080 | * |
Temperature | 36.72 ± 1.43 | 37.23 ± 1.29 | **** | 0.141 | **** |
Systolic Blood Pressure | 107.66± 26.68 | 120.59 ± 24.13 | **** | 0.193 | **** |
Diastolic Blood Pressure | 62.78 ± 13.51 | 69.80 ± 13.58 | **** | 0.209 | **** |
Mean Blood Pressure | 77.74 ± 16.81 | 86.73 ± 15.82 | **** | 0.202 | **** |
Respiratory Rate | 27.67 ± 6.14 | 24.70 ± 5.57 | **** | −0.214 | **** |
Glasgow Coma Scale | 13.26 ± 2.88 | 14.40 ± 1.86 | **** | 0.253 | **** |
SIRS | 2.29 ± 1.04 | 1.93 ± 1.23 | *** | −0.150 | **** |
qSOFA | 1.65 ± 0.85 | 0.94 ± 0.75 | **** | −0.328 | **** |
SOFA | 5.18 ± 3.38 | 2.81 ± 2.46 | **** | −0.275 | **** |
APACHE 2 | 17.40 ± 6.67 | 11.05 ± 6.28 | **** | −0.328 | **** |
NEWS-2 | 7.30 ± 3.56 | 4.42 ± 3.04 | **** | −0.300 | **** |
P/F ratio | 294.67 ± 134.82 | 323.24 ± 120.82 | * | 0.101 | ** |
Lactates (T0) | 3.55 ± 3.38 | 2.03 ± 2.43 | **** | −0.259 | **** |
Prognostic Factors, Tests and Scores | Deceased | Survivors | Z Sig. | Tau-b | Tau Sig. |
---|---|---|---|---|---|
Age | 76.98 ± 13.6 | 64.71 ± 19.3 | **** | −0.280 | **** |
O2 Saturation | 95.56 ± 4.9 | 96.42 ± 3.9 | * | 0.042 | - |
Temperature | 36.88 ± 1.4 | 37.24 ± 1.3 | *** | 0.100 | *** |
Systolic Blood Pressure | 108.11 ± 25.1 | 122.75 ± 24 | **** | 0.244 | **** |
Diastolic Blood Pressure | 62.92 ± 14 | 71.03 ± 12.9 | **** | 0.267 | **** |
Mean Blood Pressure | 77.98 ± 16.6 | 88.27 ± 15 | **** | 0.259 | **** |
Heart Rate | 97.96 ± 21.3 | 93.53 ± 18.9 | * | −0.091 | ** |
Respiratory Rate | 27.24 ± 6.2 | 24.4 ± 5.3 | **** | −0.217 | **** |
Glasgow Coma Scale | 13.46 ± 2.7 | 14.5 ± 1.8 | **** | 0.267 | **** |
SIRS | 2.32 (±1.2) | 1.84 (±1.2) | **** | −0.195 | **** |
qSOFA | 1.54 ± 0.9 | 0.87 ± 0.7 | **** | −0.351 | **** |
SOFA | 4.72 ± 3.3 | 2.62 ± 2.4 | **** | −0.285 | **** |
APACHE 2 | 16.46 ± 6.7 | 10.41 ± 6 | **** | −0.356 | **** |
NEWS-2 | 6.9 ± 3.5 | 4.12 ± 2.9 | **** | −0.330 | **** |
Lactates (T0) | 3.25 ± 3.3 | 1.9 ± 2.2 | **** | −0.250 | **** |
(a) | ||||
---|---|---|---|---|
Prognostic Factors | B | s.e. | p | Log-Odds |
Age | −0.050 | 0.011 | <0.001 | 0.951 |
Lactate 2–2.5 mmo/L | −0.876 | 0.619 | 0.157 | 0.416 |
≥2.5 mmo/L | −1.418 | 0.387 | <0.001 | 0.242 |
NEWS2 | −0.224 | 0.051 | <0.001 | 0.799 |
Constant | 4.555 | 0.845 | ||
(Nagelkerke R2 = 0.41; Cox-Snell R2 = 0.30). | ||||
Confusion Matrix | Predicted 28-Day Status | Correct % | ||
Observed 28-day Status | Deceased | Survivors | Total | |
Deceased | 105 | 32 | 137 | 76.6 |
Survivors | 30 | 106 | 136 | 77.9 |
Total | 135 | 138 | 273 | |
Overall Correct % | 77.3 | |||
(b) | ||||
Prognostic Factors | B | s.e. | p | Log-Odds |
Age | −0.055 | 0.011 | <0.001 | 0.946 |
Terminal patient | −1.205 | 0.407 | 0.003 | 0.300 |
Lactate 2–2.5 mmo/L | −0.815 | 0.639 | 0.202 | 0.442 |
≥2.5 mmo/L | −1.426 | 0.393 | <0.001 | 0.240 |
NEWS2 | −0.206 | 0.051 | <0.001 | 0.814 |
Constant | 4.461 | 0.881 | ||
(Nagelkerke R2 = 0.43; Cox-Snell R2 = 0.32). | ||||
Confusion Matrix | Predicted 28 Day Status | Correct % | ||
Observed 28-day Status | Deceased | Survivors | Total | |
Deceased | 106 | 31 | 137 | 77.4 |
Survivors | 27 | 109 | 136 | 80.1 |
Total | 133 | 140 | 273 | |
Overall Correct % | 78.8 |
(a) | ||||
---|---|---|---|---|
Prognostic Factors | B | s.e. | p | Log-Odds |
Age | −0.042 | 0.008 | <0.001 | 0.959 |
Lactate 2–2.5 mmo/L | −0.774 | 0.553 | 0.162 | 0.461 |
≥2.5 mmo/L | −0.864 | 0.293 | 0.003 | 0.421 |
NEWS2 | −0.197 | 0.039 | <0.001 | 0.821 |
Constant | 3.747 | 0.642 | ||
(Nagelkerke R2 = 0.32; Cox-Snell R2 = 0.24). | ||||
Confusion Matrix | Predicted 90-Day Status | Correct % | ||
Observed 90-day Status | Deceased | Survivors | Total | |
Deceased | 146 | 57 | 202 | 71.9 |
Survivors | 60 | 140 | 200 | 70.0 |
Total | 206 | 197 | 404 | |
Overall Correct % | 71.0 | |||
(b) | ||||
Prognostic Factors | B | s.e. | p | Log-Odds |
Age | −0.044 | 0.008 | <0.001 | 0.957 |
Terminal patient | −1.382 | 0.380 | <0.001 | 0.251 |
Lactate 2–2.5 mmo/L | −0.697 | 0.565 | 0.217 | 0.498 |
≥2.5 mmo/L | −0.825 | 0.297 | 0.005 | 0.438 |
NEWS2 | −0.180 | 0.039 | <0.001 | 0.836 |
Constant | 3.352 | 0.676 | ||
(Nagelkerke R2 = 0.36; Cox-Snell R2 = 0.27). | ||||
Confusion Matrix | Predicted 90 Day Status | Correct % | ||
Observed 90-day Status | Deceased | Survivors | Total | |
Deceased | 153 | 50 | 202 | 75.4 |
Survivors | 50 | 150 | 200 | 75.0 |
Total | 203 | 200 | 404 | |
Overall Correct % | 75.2 |
Outcomes | Joint Probability Distrib. | Groups | |||||
---|---|---|---|---|---|---|---|
Criteria | Deceased | Survivor | Total | Deceased | Survivor | Total | mortality rate |
NEWS2 | |||||||
No alert | 66 | 340 | 406 | 11.8 | 61.0 | 72.9 | 16.3 |
Alert | 71 | 80 | 151 | 12.7 | 14.4 | 27.1 | 47.0 |
Total | 137 | 420 | 557 | 24.6 | 75.4 | 100.0 | 24.6 |
Odds Ratio: | 0.219 | ||||||
NEWS2/A | |||||||
No alert | 12 | 262 | 274 | 2.2 | 47.0 | 49.2 | 4.4 |
Alert | 125 | 158 | 283 | 22.4 | 28.4 | 50.8 | 44.2 |
Total | 137 | 420 | 557 | 24.6 | 75.4 | 100.0 | 24.6 |
Odds Ratio | 0.058 | ||||||
Results assuming constant care outcomes | |||||||
No alert | 12 | 262 | 274 | 2.2 | 47.0 | 49.2 | 4.4 |
Alert | 96 | 187 | 283 | 17.2 | 33.6 | 50.8 | 33.9 |
Total | 108 | 449 | 557 | 19.4 | 80.6 | 100.0 | 19.4 |
Results assuming half survival rate | |||||||
No alert | 12 | 262 | 274 | 2.2 | 47.0 | 49.2 | 4.4 |
Alert | 111 | 172 | 283 | 19.9 | 30.9 | 50.8 | 39.2 |
Total | 123 | 434 | 557 | 22.1 | 77.9 | 100.0 | 22.1 |
NEWS2/B | |||||||
No alert | 10 | 255 | 265 | 1.8 | 45.8 | 47.6 | 3.8 |
Alert | 127 | 165 | 292 | 22.8 | 29.6 | 52.4 | 43.5 |
Total | 137 | 420 | 557 | 24.6 | 75.4 | 100.0 | 24.6 |
Odds Ratio | 0.051 | ||||||
Results assuming constant care outcomes | |||||||
No alert | 10 | 255 | 265 | 1.8 | 45.8 | 47.6 | 3.8 |
Alert | 97 | 195 | 292 | 17.4 | 35.0 | 52.4 | 33.2 |
Total | 107 | 450 | 557 | 19.2 | 80.8 | 100.0 | 19.2 |
Results assuming half survival rate | |||||||
No alert | 10 | 255 | 265 | 1.8 | 45.8 | 47.6 | 3.8 |
Alert | 112 | 180 | 292 | 20.1 | 32.3 | 52.4 | 38.4 |
Total | 122 | 435 | 557 | 21.9 | 78.1 | 100.0 | 21.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzessere, P.; Lovero, R.; Crocetta, C.; Firza, N.; Brescia, V.; Cazzolla, A.P.; Dioguardi, M.; Testa, F.; Colella, M.; Santacroce, L. Improved Prognostic Accuracy of NEWS2 Score with Triage Data in Adults with Bacterial Sepsis: A Retrospective Cohort Study. Int. J. Transl. Med. 2025, 5, 44. https://doi.org/10.3390/ijtm5040044
Pozzessere P, Lovero R, Crocetta C, Firza N, Brescia V, Cazzolla AP, Dioguardi M, Testa F, Colella M, Santacroce L. Improved Prognostic Accuracy of NEWS2 Score with Triage Data in Adults with Bacterial Sepsis: A Retrospective Cohort Study. International Journal of Translational Medicine. 2025; 5(4):44. https://doi.org/10.3390/ijtm5040044
Chicago/Turabian StylePozzessere, Pietro, Roberto Lovero, Corrado Crocetta, Najada Firza, Vincenzo Brescia, Angela Pia Cazzolla, Mario Dioguardi, Francesco Testa, Marica Colella, and Luigi Santacroce. 2025. "Improved Prognostic Accuracy of NEWS2 Score with Triage Data in Adults with Bacterial Sepsis: A Retrospective Cohort Study" International Journal of Translational Medicine 5, no. 4: 44. https://doi.org/10.3390/ijtm5040044
APA StylePozzessere, P., Lovero, R., Crocetta, C., Firza, N., Brescia, V., Cazzolla, A. P., Dioguardi, M., Testa, F., Colella, M., & Santacroce, L. (2025). Improved Prognostic Accuracy of NEWS2 Score with Triage Data in Adults with Bacterial Sepsis: A Retrospective Cohort Study. International Journal of Translational Medicine, 5(4), 44. https://doi.org/10.3390/ijtm5040044