Role of Circulating X-Chromosome Inactivation and Xist as Biomarkers in Female Carriers of Fabry Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Clinical Examinations
2.2. X-Chromosome Inactivation (XCI) Assay
2.3. Xist Determination
2.4. Statistical Analysis
3. Results
3.1. Overall Findings
3.2. Renal Features
3.3. Cardiac Features
3.4. Neurological Features
3.5. Non-Skewed vs. Skewed Pathogenic GLA Variants Carriers
3.6. Xist Evaluation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Germain, D.P. Fabry Disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef]
- Michaud, M.; Mauhin, W.; Belmatoug, N.; Garnotel, R.; Bedreddine, N.; Catros, F.; Ancellin, S.; Lidove, O.; Gaches, F. When and How to Diagnose Fabry Disease in Clinical Pratice. Am. J. Med. Sci. 2020, 360, 641–649. [Google Scholar] [CrossRef]
- Pinto, L.L.C.; Vieira, T.A.; Giugliani, R.; Schwartz, I.V.D. Expression of the Disease on Female Carriers of X-Linked Lysosomal Disorders: A Brief Review. Orphanet J. Rare Dis. 2010, 5, 14. [Google Scholar] [CrossRef]
- Deegan, P.B.; Baehner, A.F.; Romero, M.-Á.B.; Hughes, D.A.; Kampmann, C.; Beck, M. Natural History of Fabry Disease in Females in the Fabry Outcome Survey. J. Med. Genet. 2006, 43, 347–352. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, J.; Wang, Y. X-Chromosome Inactivation and Related Diseases. Genet. Res. 2022, 2022, 1391807. [Google Scholar] [CrossRef]
- Izhar, R.; Borriello, M.; La Russa, A.; Di Paola, R.; De, A.; Capasso, G.; Ingrosso, D.; Perna, A.F.; Simeoni, M. Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations. Genes 2023, 15, 37. [Google Scholar] [CrossRef]
- Pereira, G.; Dória, S. X-Chromosome Inactivation: Implications in Human Disease. J. Genet. 2021, 100, 63. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, M.; Ren, G. Long Non-Coding RNA XIST Promotes Osteoporosis by Inhibiting the Differentiation of Bone Marrow Mesenchymal Stem Cell by Sponging miR-29b-3p That Suppresses Nicotinamide N-Methyltransferase. Bioengineered 2021, 12, 6057–6069. [Google Scholar] [CrossRef]
- Monfort, A.; Wutz, A. The B-Side of Xist. F1000Research 2020, 9, 55. [Google Scholar] [CrossRef]
- Simonetta, I.; Tuttolomondo, A.; Daidone, M.; Miceli, S.; Pinto, A. Treatment of Anderson-Fabry Disease. Curr. Pharm. Des. 2020, 26, 5089–5099. [Google Scholar] [CrossRef]
- Linthorst, G.E.; Poorthuis, B.J.H.M.; Hollak, C.E.M. Enzyme Activity for Determination of Presence of Fabry Disease in Women Results in 40% False-Negative Results. J. Am. Coll. Cardiol. 2008, 51, 2082. [Google Scholar] [CrossRef]
- Viggiano, E.; Politano, L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 7663. [Google Scholar] [CrossRef]
- Germain, D.P.; Fouilhoux, A.; Decramer, S.; Tardieu, M.; Pillet, P.; Fila, M.; Rivera, S.; Deschênes, G.; Lacombe, D. Consensus Recommendations for Diagnosis, Management and Treatment of Fabry Disease in Paediatric Patients. Clin. Genet. 2019, 96, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Gu, Y.; Sun, Y.; Chen, J.; Wang, X.; Zhang, Y.; Gao, L.; Li, L. The Long Noncoding RNA XIST Regulates Cardiac Hypertrophy by Targeting miR-101. J. Cell. Physiol. 2019, 234, 13680–13692. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-T.; Lu, J.-M.; Wang, Y.; Cheng, X.-L.; He, X.-H.; Zheng, W.-Z.; Chen, H.; Wang, Y.-L. XIST Accelerates Neuropathic Pain Progression through Regulation of miR-150 and ZEB1 in CCI Rat Models. J. Cell. Physiol. 2018, 233, 6098–6106. [Google Scholar] [CrossRef]
- Wang, Q. XIST Silencing Alleviated Inflammation and Mesangial Cells Proliferation in Diabetic Nephropathy by Sponging miR-485. Arch. Physiol. Biochem. 2022, 128, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Desnick, R.J.; Brady, R.; Barranger, J.; Collins, A.J.; Germain, D.P.; Goldman, M.; Grabowski, G.; Packman, S.; Wilcox, W.R. Fabry Disease, an under-Recognized Multisystemic Disorder: Expert Recommendations for Diagnosis, Management, and Enzyme Replacement Therapy. Ann. Intern. Med. 2003, 138, 338–346. [Google Scholar] [CrossRef]
- Whybra, C.; Kampmann, C.; Krummenauer, F.; Ries, M.; Mengel, E.; Miebach, E.; Baehner, F.; Kim, K.; Bajbouj, M.; Schwarting, A.; et al. The Mainz Severity Score Index: A New Instrument for Quantifying the Anderson-Fabry Disease Phenotype, and the Response of Patients to Enzyme Replacement Therapy. Clin. Genet. 2004, 65, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. Methylation of HpaII and HhaI Sites near the Polymorphic CAG Repeat in the Human Androgen-Receptor Gene Correlates with X Chromosome Inactivation. Am. J. Hum. Genet. 1992, 51, 1229–1239. [Google Scholar]
- Amos-Landgraf, J.M.; Cottle, A.; Plenge, R.M.; Friez, M.; Schwartz, C.E.; Longshore, J.; Willard, H.F. X Chromosome-Inactivation Patterns of 1,005 Phenotypically Unaffected Females. Am. J. Hum. Genet. 2006, 79, 493–499. [Google Scholar] [CrossRef]
- Dobrovolny, R.; Dvorakova, L.; Ledvinova, J.; Magage, S.; Bultas, J.; Lubanda, J.C.; Elleder, M.; Karetova, D.; Pavlikova, M.; Hrebicek, M. Relationship between X-Inactivation and Clinical Involvement in Fabry Heterozygotes. Eleven Novel Mutations in the α-Galactosidase A Gene in the Czech and Slovak Population. J. Mol. Med. 2005, 83, 647–654. [Google Scholar] [CrossRef]
- Franco, B.; Ballabio, A. X-Inactivation and Human Disease: X-Linked Dominant Male-Lethal Disorders. Curr. Opin. Genet. Dev. 2006, 16, 254–259. [Google Scholar] [CrossRef]
- Migeon, B.R. X-Linked Diseases: Susceptible Females. Genet. Med. 2020, 22, 1156–1174. [Google Scholar] [CrossRef]
- Echevarria, L.; Benistan, K.; Toussaint, A.; Dubourg, O.; Hagege, A.A.; Eladari, D.; Jabbour, F.; Beldjord, C.; De Mazancourt, P.; Germain, D.P. X-Chromosome Inactivation in Female Patients with Fabry Disease. Clin. Genet. 2016, 89, 44–54. [Google Scholar] [CrossRef]
- Maier, E.M.; Osterrieder, S.; Whybra, C.; Ries, M.; Gal, A.; Beck, M.; Roscher, A.A.; Muntau, A.C. Disease Manifestations and X Inactivation in Heterozygous Females with Fabry Disease. Acta Paediatr. 2006, 95, 30–38. [Google Scholar] [CrossRef]
- Elstein, D.; Schachamorov, E.; Beeri, R.; Altarescu, G. X-Inactivation in Fabry Disease. Gene 2012, 505, 266–268. [Google Scholar] [CrossRef]
- Fuller, M.; Mellett, N.; Hein, L.K.; Brooks, D.A.; Meikle, P.J. Absence of α-Galactosidase Cross-Correction in Fabry Heterozygote Cultured Skin Fibroblasts. Mol. Genet. Metab. 2015, 114, 268–273. [Google Scholar] [CrossRef]
- Loda, A.; Collombet, S.; Heard, E. Gene Regulation in Time and Space during X-Chromosome Inactivation. Nat. Rev. Mol. Cell Biol. 2022, 23, 231–249. [Google Scholar] [CrossRef]
- Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological Function of Long Non-Coding RNA (LncRNA) Xist. Front. Cell Dev. Biol. 2021, 9, 645647. [Google Scholar] [CrossRef]
- Tantai, J.; Hu, D.; Yang, Y.; Geng, J. Combined Identification of Long Non-Coding RNA XIST and HIF1A-AS1 in Serum as an Effective Screening for Non-Small Cell Lung Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 7887–7895. [Google Scholar] [PubMed]
- Liu, M.; Zhu, H.; Li, Y.; Zhuang, J.; Cao, T.; Wang, Y. Expression of Serum lncRNA-Xist in Patients with Polycystic Ovary Syndrome and Its Relationship with Pregnancy Outcome. Taiwan J. Obstet. Gynecol. 2020, 59, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hou, Z.; Li, X.; Liu, X.; Kong, Y.; Cui, Y.; Bao, L.; Dong, N.R.S. Relationship of Serum lncRNA XIST and miR-30d-5p Levels with Diabetic Peripheral Neuropathy in Type 2 Diabetes. Am. J. Transl. Res. 2022, 14, 9001–9006. [Google Scholar] [PubMed]
- Sohrabifar, N.; Ghaderian, S.M.H.; Alipour Parsa, S.; Ghaedi, H.; Jafari, H. Variation in the Expression Level of MALAT1, MIAT and XIST lncRNAs in Coronary Artery Disease Patients with and without Type 2 Diabetes Mellitus. Arch. Physiol. Biochem. 2022, 128, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Y.; Gao, G.; Zhou, Z. Knockdown XIST Alleviates LPS-Induced WI-38 Cell Apoptosis and Inflammation Injury via Targeting miR-370-3p/TLR4 in Acute Pneumonia. Cell Biochem. Funct. 2019, 37, 348–358. [Google Scholar] [CrossRef]
- Hossain, M.A.; Wu, C.; Yanagisawa, H.; Miyajima, T.; Akiyama, K.; Eto, Y. Future Clinical and Biochemical Predictions of Fabry Disease in Females by Methylation Studies of the GLA Gene. Mol. Genet. Metab. Rep. 2019, 20, 100497. [Google Scholar] [CrossRef]
n (%) | Mean | SD | Median | Min. | Max. | |
---|---|---|---|---|---|---|
AE, y | 33 | 42.09 | 16.04 | 38.83 | 16.25 | 85.50 |
AAO, y | 21 | 27.81 | 17.65 | 24.00 | 8.00 | 79.00 |
AAD, y | 33 | 34.82 | 14.87 | 32.00 | 8.00 | 79.00 |
DD, y | 21 | 17.21 | 17.10 | 11.00 | 0 | 60.00 |
Diagnostic delay, y | 33 | 6.33 | 11.40 | 0 | 0 | 39 |
Phenotype |
| |||||
GLA variant |
| |||||
Treatment | treated n = 15 (45.5%), n = 11 ERT n = 4 chaperone | |||||
Treatment duration, y | 15 | 7.47 | 4.05 | 8.00 | 1 | 18 |
MSSI | 33 | 7.33 | 8.12 | 5.00 | 0 | 30 |
general | 33 | 2.03 | 2.34 | 1.00 | 0 | 7 |
renal | 33 | 1.06 | 2.18 | 0 | 0 | 8.00 |
cardiological | 33 | 1.58 | 3.12 | 0 | 0 | 15.00 |
neurological | 33 | 2.30 | 2.94 | 1.00 | 0 | 11.00 |
lyso-Gb3 (before treatment, ng/ml | 28 | 2.55 | 2.39 | 1.65 | 0.30 | 8.40 |
α-Gal A activity, % | 20 | 42.93 | 17.75 | 45.20 | 12.90 | 73.8 |
XCI status (n = 31) |
| |||||
Renal features | ||||||
Renal dysfunction | 7/33 (21.2%) | |||||
Creatinine, mg/dL | 33 | 0.79 | 0.39 | 0.69 | 0.55 | 2.69 |
Cystatine C (n = 22), mg/dL | 22 | 0.89 | 0.57 | 0.81 | 0.30 | 3.26 |
BUN, mg/dL | 31 | 16.00 | 10.09 | 14.00 | 7.00 | 58.00 |
eGFR, ml/min | 33 | 102.30 | 27.48 | 112.70 | 20.00 | 156.00 |
24 h proteinuria, mg | 21 | 47.64 | 118.57 | 5.0 | 0 | 520.00 |
Proteinuria (spot urine, mg/dL | 16 | 9.25 | 16.26 | 3.0 | 0 | 62.00 |
24 h albuminuria, mg | 25 | 90.74 | 317.12 | 9.70 | 0 | 1587.00 |
Microalbuminuria | 5/25 (20.0%) | |||||
Severe renal dysfunction | 1/33 (3.0%) | |||||
Cardiovascular features | ||||||
Loop-recorder implantation | 3/33 (9.1%) | |||||
Major cardiovascular events | 1/33 (3.0%) | |||||
sAH | 9/33 (27.3%) | |||||
Dyslipidemia | 7/33 (21.2%) | |||||
Statin treatment | 4/33 (12.1%) | |||||
Antithrombotic drug treatment | 3/33 (9.1%) | |||||
Smoking habit | 9/33 (27.3%) | |||||
Diabetes mellitus | 0/33 (0%) | |||||
Lower limb oedema | 2/33 (6.1%) | |||||
IVS thickness, mm | 21 | 10.72 | 2.43 | 9.00 | 8.20 | 15.00 |
LV end-diastolic diameter, mm | 21 | 44.19 | 5.66 | 45.00 | 31.00 | 55.00 |
LV end-systolic diameter, mm | 21 | 25.48 | 3.80 | 24.00 | 20.80 | 36.0 |
LV posterior wall thickness, mm | 21 | 10.01 | 2.40 | 9.00 | 7.00 | 15.00 |
LVMI, g/m2 | 21 | 92.67 | 25.52 | 86.00 | 68.00 | 154.00 |
LV hypertrophy | 6/21 (28.6%) | |||||
RWT | 21 | 0.38 | 0.13 | 0.31 | 0.23 | 0.62 |
Neurological features | ||||||
Previous stroke | 2/33 (6.1%) | |||||
Brain MRI WMH (n = 16) | 8/16 (50.0%) | |||||
Brain MRI pulvinar hyperintensity | 0/16 (0%) | |||||
Brain MRI basilar dolichoectasia | 0/16 (0%) | |||||
Fazekas score | ||||||
0 | 10/16 (62.5%) | |||||
1 | 5/16 (31.3%) | |||||
2 | 0/16 (0%) | |||||
3 | 1/16 (6.3%) | |||||
PNP | 0/21 (0%) | |||||
Depression | 5/33 (15.2%) | |||||
Anti-depressive treatment | 2/33 (6.1%) | |||||
Headache | 7/33 (21.2%) | |||||
VAS score | 33 | 1.06 | 1.50 | 0 | 0 | 5.00 |
Tinnitus | 5/33 (15.2%) | |||||
Vertigo | 4/33 (12.1%) | |||||
Hearing loss | 5/33 (15.2%) | |||||
Acroparesthesias | 16/33 (48.5%) | |||||
Dysidrosis | 12/33 (36.4%) | |||||
Other features | ||||||
Recurrent fever | 2/33 (6.1%) | |||||
Angiokeratomas | 5/33 (15.2%) | |||||
Corneal abnormalities | 7/33 (21.2%) | |||||
Gastrointestinal manifestations | 13/33 (39.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, S.; Fargnoli, A.; Di Natale, D.; Dalla Zanna, G.; Funcis, A.; Re, F.; Gragnaniello, V.; Verrecchia, E.; Burlina, A.; Tabolacci, E.; et al. Role of Circulating X-Chromosome Inactivation and Xist as Biomarkers in Female Carriers of Fabry Disease. Int. J. Transl. Med. 2024, 4, 618-630. https://doi.org/10.3390/ijtm4040043
Rossi S, Fargnoli A, Di Natale D, Dalla Zanna G, Funcis A, Re F, Gragnaniello V, Verrecchia E, Burlina A, Tabolacci E, et al. Role of Circulating X-Chromosome Inactivation and Xist as Biomarkers in Female Carriers of Fabry Disease. International Journal of Translational Medicine. 2024; 4(4):618-630. https://doi.org/10.3390/ijtm4040043
Chicago/Turabian StyleRossi, Salvatore, Arcangelo Fargnoli, Daniele Di Natale, Gianmarco Dalla Zanna, Antonio Funcis, Federica Re, Vincenza Gragnaniello, Elena Verrecchia, Alberto Burlina, Elisabetta Tabolacci, and et al. 2024. "Role of Circulating X-Chromosome Inactivation and Xist as Biomarkers in Female Carriers of Fabry Disease" International Journal of Translational Medicine 4, no. 4: 618-630. https://doi.org/10.3390/ijtm4040043
APA StyleRossi, S., Fargnoli, A., Di Natale, D., Dalla Zanna, G., Funcis, A., Re, F., Gragnaniello, V., Verrecchia, E., Burlina, A., Tabolacci, E., & Silvestri, G. (2024). Role of Circulating X-Chromosome Inactivation and Xist as Biomarkers in Female Carriers of Fabry Disease. International Journal of Translational Medicine, 4(4), 618-630. https://doi.org/10.3390/ijtm4040043