Classification of Trajectory Types Exhibiting Dynamical Matching in Caldera-Type Hamiltonian Systems
Abstract
1. Introduction
2. Caldera Potential
3. Results
- First Type (type I): The trajectories, integrated forward and backward in time, pass directly through the central region of the caldera and exit via the region of the opposite lower index-1 saddle.
- Second Type (type II): The trajectories, both forward and backward in time, escape directly to infinity.
- Third type (type III): In this case, integrated forward-time trajectories traverse the central region of the caldera and exit through the region of the opposite lower index-1 saddle. When integrated backward in time, these trajectories escape directly to infinity.
- Fourth type (type IV): This type exhibits the opposite behavior of the third type. The trajectories integrated backward in time pass through the central region of the caldera and exit via the opposite lower index-1 saddle, whereas those integrated forward in time escape directly to infinity.
- Identify a periodic orbit.
- Represent the periodic orbit within the configuration space.
- We sample points from the periodic orbit’s projection, with uniform spacing along the orbit.
- For every we find the corresponding , using the Hamiltonian and for :where m represents the mass ( in our case). Observe that a solution exists only when , yielding two possible solutions: .
- For every point , K evenly spaced are chosen from to . Solving for each produces two corresponding values: one positive and one negative.
4. Discussion
- In the 2D caldera, there are no trajectories with initial conditions on the periodic orbit dividing surfaces of the unstable periodic orbits of the upper index-1 saddles that correspond to homoclinic intersections of the stable and unstable invariant manifolds of the unstable periodic orbits (NHIMs) of lower index-1 saddles.
- In the 2D caldera, likewise, no trajectories initialized on the periodic orbit dividing surfaces of the upper index-1 saddles begin at infinity and return to infinity by evolving along the unstable invariant manifolds of the corresponding unstable periodic orbits (NHIMs).
- These observations indicate that certain dynamical phenomena, such as those corresponding to the first and second types of trajectory behavior, occur only in Hamiltonian systems with three degrees of freedom and not in two-degrees-of-freedom systems. These phenomena warrant further investigation in future studies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, B.K. Trajectories through an intermediate at a fourfold branch point. Implications for the stereochemistry of biradical reactions. J. Am. Chem. Soc. 1985, 107, 5730–5732. [Google Scholar] [CrossRef]
- Carpenter, B.K. Dynamic Matching: The Cause of Inversion of Configuration in the [1,3] Sigmatropic Migration? J. Am. Chem. Soc. 1995, 117, 6336–6344. [Google Scholar] [CrossRef]
- Doering, W.v.E.; Cheng, X.; Lee, K.; Lin, Z. Fate of the intermediate diradicals in the caldera: Stereochemistry of thermal stereomutations, (2 + 2) cycloreversions, and (2 + 4) ring-enlargements of cis-and trans-1-cyano-2-(E and Z)-propenyl-cis-3,4-dideuteriocyclobutanes. J. Am. Chem. Soc. 2002, 124, 11642–11652. [Google Scholar] [CrossRef]
- Katsanikas, M.; Wiggins, S. Phase Space Structure and Transport in a Caldera Potential Energy Surface. Int. J. Bifurc. Chaos 2018, 28, 1830042. [Google Scholar] [CrossRef]
- Katsanikas, M.; Wiggins, S. Phase Space Analysis of the Nonexistence of Dynamical Matching in a Stretched Caldera Potential Energy Surface. Int. J. Bifurc. Chaos 2019, 29, 1950057. [Google Scholar] [CrossRef]
- Katsanikas, M.; García-Garrido, V.J.; Wiggins, S. The dynamical matching mechanism in phase space for caldera-type potential energy surfaces. Chem. Phys. Lett. 2020, 743, 137199. [Google Scholar] [CrossRef]
- Kondratyev, V.N.; Osipov, V.A. Superferromagnetic sensors. Nanomanufacturing 2023, 3, 263–280. [Google Scholar] [CrossRef]
- Baldwin, J.E. Thermal rearrangements of Vinylcyclopropanes to Cyclopentenes. Chem. Rev. 2003, 103, 1197–1212. [Google Scholar] [CrossRef]
- Goldschmidt, Z.; Crammer, B. Vinylcyclopropane rearrangements. Chem. Soc. Rev. 1988, 17, 229–267. [Google Scholar] [CrossRef]
- Doubleday, C.; Bolton, K.; Hase, W.L. Direct dynamics study of the stereomutation of cyclopropane. J. Am. Chem. Soc. 1997, 119, 5251–5252. [Google Scholar] [CrossRef]
- Doubleday, C.; Nendel, M.; Houk, K.; Thweatt, D.; Page, M. Direct Dynamics Quasiclassical Trajectory Study of the Stereochemistry of the Vinylcyclopropane-Cyclopentene Rearrangement. J. Am. Chem. Soc. 1999, 121, 4720–4721. [Google Scholar] [CrossRef]
- Doubleday, C.; Suhrada, C.P.; Houk, K. Dynamics of the degenerate rearrangement of bicyclo [3.1.0] hex-2-ene. J. Am. Chem. Soc. 2006, 128, 90–94. [Google Scholar] [CrossRef]
- Reyes, M.B.; Lobkovsky, E.B.; Carpenter, B.K. Interplay of orbital symmetry and nonstatistical dynamics in the thermal rearrangements of bicyclo [n.1.0] polyenes. J. Am. Chem. Soc. 2002, 124, 641–651. [Google Scholar] [CrossRef]
- Pandey, P.; Keshavamurthy, S. Dynamic matching—Revisiting the Carpenter model. J. Phys. Org. Chem. 2022, 35, e4404. [Google Scholar] [CrossRef]
- Carpenter, B.K. Nonstatistical dynamics in thermal reactions of polyatomic molecules. Annu. Rev. Phys. Chem. 2005, 56, 57–89. [Google Scholar] [CrossRef]
- Carpenter, B.K. Energy Disposition in Reactive Intermediates. Chem. Rev. 2013, 113, 7265–7286. [Google Scholar] [CrossRef]
- García-Garrido, V.J.; Wiggins, S. Exploring Dynamical Matching and Recrossing on a Mesa Potential Energy Surface. Int. J. Bifurc. Chaos 2022, 32, 2250219. [Google Scholar] [CrossRef]
- Katsanikas, M.; Wiggins, S. The nature of reactive and non-reactive trajectories for a three dimensional Caldera potential energy surface. Phys. D Nonlinear Phenom. 2022, 435, 133293. [Google Scholar] [CrossRef]
- Wiggins, S.; Katsanikas, M. Dynamical matching in a three-dimensional Caldera potential-energy surface. Phys. Rev. E 2023, 108, 014206. [Google Scholar] [CrossRef]
- Katsanikas, M.; Wiggins, S. The generalization of the periodic orbit dividing surface in Hamiltonian systems with three or more degrees of freedom—I. Int. J. Bifurc. Chaos 2021, 31, 2130028. [Google Scholar] [CrossRef]
- Katsanikas, M.; Wiggins, S. The generalization of the periodic orbit dividing surface for Hamiltonian systems with three or more degrees of freedom—II. Int. J. Bifurc. Chaos 2021, 31, 2150188. [Google Scholar] [CrossRef]
- Pechukas, P.; McLafferty, F.J. On transition-state theory and the classical mechanics of collinear collisions. J. Chem. Phys. 1973, 58, 1622–1625. [Google Scholar] [CrossRef]
- Pechukas, P.; Pollak, E. Classical transition state theory is exact if the transition state is unique. J. Chem. Phys. 1979, 71, 2062–2068. [Google Scholar] [CrossRef]
- Pechukas, P. Recent Developments in Transition State Theory. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 372–378. [Google Scholar] [CrossRef]
- Pollak, E.; Pechukas, P. Transition states, trapped trajectories, and classical bound states embedded in the continuum. J. Chem. Phys. 1978, 69, 1218–1226. [Google Scholar] [CrossRef]
- Pollak, E.; Child, M.S.; Pechukas, P. Classical transition state theory: A lower bound to the reaction probability. J. Chem. Phys. 1980, 72, 1669–1678. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsanikas, M.; Wiggins, S. Classification of Trajectory Types Exhibiting Dynamical Matching in Caldera-Type Hamiltonian Systems. Dynamics 2025, 5, 49. https://doi.org/10.3390/dynamics5040049
Katsanikas M, Wiggins S. Classification of Trajectory Types Exhibiting Dynamical Matching in Caldera-Type Hamiltonian Systems. Dynamics. 2025; 5(4):49. https://doi.org/10.3390/dynamics5040049
Chicago/Turabian StyleKatsanikas, Matthaios, and Stephen Wiggins. 2025. "Classification of Trajectory Types Exhibiting Dynamical Matching in Caldera-Type Hamiltonian Systems" Dynamics 5, no. 4: 49. https://doi.org/10.3390/dynamics5040049
APA StyleKatsanikas, M., & Wiggins, S. (2025). Classification of Trajectory Types Exhibiting Dynamical Matching in Caldera-Type Hamiltonian Systems. Dynamics, 5(4), 49. https://doi.org/10.3390/dynamics5040049

