Existence for Nonlinear Fourth-Order Two-Point Boundary Value Problems
Abstract
:1. Introduction
2. Basic Existence Results, Auxiliary Results
- (i)
- For , the problem (10) has a unique solution
- (ii)
- (iii)
- (iv)
- (v)
- There is a sufficiently small such that and the function is continuous for where the set J is as in(H), and the constants are as in (iv).
3. Existence Results
4. Examples
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabada, A.; Cid, J.; Sanchez, L. Positivity and lower and upper solutions for fourth order boundary value problems. Nonlinear Anal. 2007, 67, 1599–1612. [Google Scholar] [CrossRef]
- Caballero, J.; Harjani, J.; Sadarangani, K. Uniqueness of positive solutions for a class of fourth-order boundary value problems. Abstr. Appl. Anal. 2011, 2011, 543035. [Google Scholar] [CrossRef]
- Cid, J.A.; Franco, D.; Minhós, F. Positive fixed points and fourth-order equations. Bull. Lond. Math. Soc. 2009, 41, 72–78. [Google Scholar] [CrossRef]
- Han, G.; Xu, Z. Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. 2008, 68, 3646–3656. [Google Scholar] [CrossRef]
- Harjani, J.; López, B.; Sadarangani, K. On positive solutions of a nonlinear fourth order boundary value problem via fixed point theorem in ordered sets. Dynam. Systems Appl. 2010, 19, 625–634. [Google Scholar]
- Infante, G.; Pietramala, P. A cantilever equation with nonlinear boundary conditions. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 2009, 15, 1–14. [Google Scholar] [CrossRef]
- Li, J. Positive solutions of singular fourth-order two-point boundary value problems. J. Appl. Math. Inform. 2009, 27, 1361–1370. [Google Scholar]
- Yang, B. Positive solutions for the beam equation under certain boundary conditions. Electron. J. Differ. Equ. 2005, 78, 1–8. [Google Scholar]
- Zhai, C.; Jiang, C. Existence of nontrivial solutions for a nonlinear fourth-order boundary value problem via iterative method. J. Nonlinear Sci. Appl. 2016, 9, 4295–4304. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, W. Positive solutions for some beam equation boundary value problems. Bound. Value Probl. 2009, 2009, 393259. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, D. 4th (and higher) order singular boundary-value-problems. Nonlinear Anal. 1990, 14, 1001–1038. [Google Scholar] [CrossRef]
- Yao, Q. Existence and multiplicity of positive solutions to a class of nonlinear cantilever beam equations. J. Syst. Sci. Math. Sci. 2009, 1, 63–69. [Google Scholar]
- Bai, Z.B.; Ge, W.G.; Wang, Y. The method of lower and upper solutions for some fourth-order equations. J. Inequal. Pure Appl. Math. 2004, 5, 13. [Google Scholar]
- Brumley, D.; Fulkerson, M.; Hopkins, B.; Karber, K. Existence of positive solutions for a class of fourth order boundary value problems. Int. J. Differ. Equ. Appl. 2016, 15, 105–115. [Google Scholar]
- Del Pino, M.A.; Manásevich, R.F. Existence for a fourth-order boundary value problem under a two parameter non-resonance condition. Proc. Amer. Math. Soc. 1991, 112, 81–86. [Google Scholar] [CrossRef] [Green Version]
- El-Haffaf, A. The upper and lower solution method for nonlinear fourth-order boundary value problem. J. Phys. Conf. Ser. 2011, 285, 012016. [Google Scholar] [CrossRef]
- Habets, P.; Ramalho, M. A monotone method for fourth order boundary value problems involving a factorizable linear operator. Port. Math. 2007, 64, 255–279. [Google Scholar] [CrossRef]
- Ma, R. Existence of positive solutions of a fourth-order boundary value problem. Appl. Math. Comput. 2005, 168, 1219–1231. [Google Scholar] [CrossRef]
- O’Regan, D. Solvability of some fourth (and higher) order singular boundary value problems. J. Math. Anal. Appl. 1991, 161, 78–116. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.F. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Discret. Contin. Dyn. Syst. 2007, 1, 694–703. [Google Scholar]
- Yao, Q. Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem. Appl. Math. 2013, 58, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Elgindi, M.B.M.; Guan, Z. On the global solvability of a class of fourth-order nonlinear boundary value problems. Internat. J. Math. Math. Sci. 1997, 20, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. On fourth order boundary value problems arising in beam analysis. Differ. Integral Equ. 1989, 2, 91–110. [Google Scholar] [CrossRef]
- Bai, Z.B. The upper and lower solution method for some fourth-order boundary value problems. Nonlinear Anal. 2007, 67, 1704–1709. [Google Scholar] [CrossRef]
- De Coster, C.; Fabry, C.; Munyamarere, F. Nonresonance conditions for fourth-order nonlinear boundary value problems. Int. J. Math. Sci. 1994, 17, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Ehme, J.; Eloe, P.W.; Henderson, J. Upper and lower solution methods for fully nonlinear boundary value problems. J. Differ. Equ. 2002, 180, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; O’Regan, D.; Perán, J. Fourth-order problems with nonlinear boundary conditions. J. Comput. Appl. Math. 2005, 174, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Granas, A.; Guenther, R.B.; Lee, J.W. Nonlinear Boundary Value Problems for Ordinary Differential Equations; Instytut Matematyczny Polskiej Akademi Nauk: Warszawa, Poland, 1985. [Google Scholar]
- Li, Y.; Liang, Q. Existence results for a fully fourth-order boundary value Problem. J. Funct. Spaces Appl. 2013, 2013, 641617. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ge, W. Solvability of two-point boundary value problems for fourth-order nonlinear differential equations at resonance. J. Anal. Its Appl.s 2003, 22, 977–989. [Google Scholar] [CrossRef] [Green Version]
- Ma, R. Existence and uniqueness theorem for some fourth-order nonlinear boundary value problems. Int. J. Math. Math. Sci. 2000, 23, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Minhós, F.; Gyulov, T.; Santos, A.I. Existence and location result for a fourth order boundary value problem. Discrete Contin. Dyn. Syst. 2005, 2005, 662–671. [Google Scholar]
- Rynne, B.P. Infinitely many solutions of superlinear fourth order boundary value problems. Topol. Methods Nonlinear Anal. 2002, 9, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Sadyrbaev, F. Nonlinear fourth-order two-point boundary value problems. Rocky Mountain J. Math. 1995, 25, 757–781. [Google Scholar] [CrossRef]
- Yao, Q. Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity. Appl. Math. 2011, 56, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Picard, E. Sur l’application des methods d’approximationes successives à l’etude de certaines equations differetielles ordinaries. J. Math. 1893, 9, 217–271. [Google Scholar]
- Scorca Dragoni, G. Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine. Math. Ann. 1931, 105, 133–143. [Google Scholar] [CrossRef]
- Bernstein, S.N. Sur les equations du calcul des variations. Ann. Sci. Ecole Norm. Sup. 1912, 29, 431–485. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, M. Uber die differentialgleihung y′′ = f(t, y, y′). Proc. Phys.-Math. Soc. Jpn. 1937, 19, 861–866. [Google Scholar]
- Agarwal, R.P.; O’Regan, D. Existence theory of single and multiple solutions to singular positone boundary value problems. J. Differ. Equations 2001, 175, 393–414. [Google Scholar] [CrossRef] [Green Version]
- Polidoro, S.; Ragusa, M.A. Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term. Rev. Mat. Iberoam. 2008, 24, 1011–1046. [Google Scholar] [CrossRef] [Green Version]
- Qin, W. The existence of solutions for fourth-order three-point BVPs under barrier strips conditions. J. Shandong Univ. Sci. Technol. (Natural Sci.) 2008, 27. (In Chinese) [Google Scholar]
- Ragusa, M.A. Elliptic boundary value problem in vanishing mean oscillation hypothesis. Comment. Math. Univ. Carolin. 1999, 40, 651–663. [Google Scholar]
- Bachar, I.; Maagli, H.; Eltayeb, H. Existence and iterative method for some Riemann fractional nonlinear boundary value problems. Mathematics 2019, 7, 961. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Kelevedjiev, P. On the solvability of fourth-order two-point boundary value problems. Mathematics 2020, 8, 603. [Google Scholar] [CrossRef] [Green Version]
- Kelevedjiev, P. Existence of solutions for two-point boundary value problems. Nonlinear Anal. 1994, 22, 217–224. [Google Scholar] [CrossRef]
- Kelevedjiev, P. Solvability of two-point boundary value problems. Nonl. Anal. 1996, 27, 309–320. [Google Scholar] [CrossRef]
- Rachůnková, I.; Staněk, S. Topological degree method in functional boundary value problems at resonance. Nonl. Anal. 1996, 27, 271–285. [Google Scholar] [CrossRef]
- Ma, R. Existence theorems for a second order three-points boundary value problem. J. Math. Anal. Appl. 1997, 212, 430–442. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.; Mihaylova, G.; Kelevedjiev, P. Existence for Nonlinear Fourth-Order Two-Point Boundary Value Problems. Dynamics 2023, 3, 152-170. https://doi.org/10.3390/dynamics3010010
Agarwal R, Mihaylova G, Kelevedjiev P. Existence for Nonlinear Fourth-Order Two-Point Boundary Value Problems. Dynamics. 2023; 3(1):152-170. https://doi.org/10.3390/dynamics3010010
Chicago/Turabian StyleAgarwal, Ravi, Gabriela Mihaylova, and Petio Kelevedjiev. 2023. "Existence for Nonlinear Fourth-Order Two-Point Boundary Value Problems" Dynamics 3, no. 1: 152-170. https://doi.org/10.3390/dynamics3010010
APA StyleAgarwal, R., Mihaylova, G., & Kelevedjiev, P. (2023). Existence for Nonlinear Fourth-Order Two-Point Boundary Value Problems. Dynamics, 3(1), 152-170. https://doi.org/10.3390/dynamics3010010