Influence of the Dufour Effect on Shear Thermal Diffusion Flows
Abstract
:1. Introduction
2. Problem Statement
- -
- The basic equation of a motion
- -
- Incompressibility equation
- -
- Heat equation
3. Construction of the Exact Solution
4. Analysis of Results
- -
- For shear flows taking into account the terms describing the Dufour effect (as well as the Soret effect [11]) does not affect the solvability condition form. The compatibility condition is obtained exactly the same way as for the thermal convection [32], i.e., without taking into account the features introduced by the presence of impurities in the fluid.
- -
- Taking into account the terms describing the Dufour effect (as well as the Soret effect [11]) does not increase the degree of polynomials on the right-hand sides of the homogeneities of used ODE. The degree of polynomials is the same for the similar equations as for the purely thermal convection [32].
- -
- Taking into account the terms describing the Dufour effect (as well as the Soret effect [11]) does not change the algorithm for finding the exact solution of the problem. The branching of the algorithm (as in [11,32]) depends only on the value of the parameter q, which determines (along with other parameters) the type of exact solution for spatial gradients u1, u2, v1, v2.
5. Interpretation of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Layek, G.C.; Mandal, B.; Bhattacharyya, K. Dufour and Soret effects on unsteady heat and mass transfer for powell-eyring fluid flow over an expanding permeable sheet. J. Appl. Comput. Mech. 2020, 6, 985–998. [Google Scholar]
- Veeresh, C.; Raju, M.C.; Varma, S.V.K.; Vijaya Kumar, A.G. Effects of thermal diffusion and radiation on magnetohydrodynamic (MHD) chemically reacting fluid flow past a vertical plate in a slip flow regime. J. Appl. Comput. Mech. 2019, 5, 334–343. [Google Scholar]
- Ludwig, C. Diffusion Zwischen Ungleich Erwärmten Orten Gleich Zusammengesetzter. Lösungen. Sitzungsbericht; Enthalten in Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften: Wien, Austria, 1856; 540p. [Google Scholar]
- Soret, C. Sur L’état d’équilibre que prend, du point de vue de sa concentration, une dissolution saline primitivement homogène, dont deux parties sont portées à des températures différentes. Arch. Sci. Phys. Natur. Genève 1879, 2, 48–61. [Google Scholar]
- De Groot, S.R. Thermodynamik Irreversibler Prozesse; North-Holland Publishing Comp.: Amsterdam, The Netherlands, 1951. [Google Scholar]
- Aristov, S.N.; Prosviryakov, E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng. 2016, 50, 286–293. [Google Scholar] [CrossRef]
- Somer, A.; Popovic, M.N.; da Cruz, G.K.; Novatski, A.; Lenzi, E.K.; Galovic, S.P. Anomalous thermal diffusion in two-layer system: The temperature profile and photoacoustic signal for rear light incidence. Int. J. Therm. Sci. 2022, 179, 107661. [Google Scholar] [CrossRef]
- Gawas, A.S.; Patil, D.V. Natural convection heat transfer with anisotropic thermal diffusion for tilted two-dimensional cavities. Int. J. Heat Mass Transf. 2022, 194, 123000. [Google Scholar] [CrossRef]
- Fan, J.; Liang, R. Effects of thermocapillary convection and shear flow on the distribution of inclusions in half-floating zones. J. Cryst. Growth 2022, 587, 126639. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. J. King Saud Univ.-Sci. 2020, 32, 3364–3371. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. Bull. Irkutsk State Univ. Ser. Math. 2021, 37, 17–30. [Google Scholar] [CrossRef]
- Jiang, N.; Studer, E.; Podvin, B. Physical modeling of simultaneous heat and mass transfer: Species interdiffusion, Soret effect and Dufour effect. Int. J. Heat Mass Transf. 2020, 156, 119758. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Effect of the Internal Friction of Fluid on the Motion of Pendulums; Cambridge Philosophical Society: Cambridge, UK, 1851; 104p. [Google Scholar]
- Van Dyke, M. Perturbation Methods in Fluid Mechanics; The Parabolic Press: Stanford, CA, USA, 1975; 143p. [Google Scholar]
- Serrin, J. Mathematical Principles of Classical Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 1959; 139p. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. In Fluid Mechanic; Pergamon Press: Oxford, UK, 1959; Volume VI, 558p. [Google Scholar]
- Birkhoff, G.; Zarantonello, E.H. Jets, Wakes and Cavities. Applied Mathematics and Mechanics: Volume Two; Academic Press: Cambridge, MA, USA, 1957; 353p. [Google Scholar] [CrossRef]
- Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1983; 553p. [Google Scholar]
- Liu, W.; Li, N.; Sun, Z.; Wang, Z.; Wang, Z. Binary droplet coalescence in shear gas flow: A molecular dynamics study. J. Mol. Liq. 2022, 354, 118841. [Google Scholar] [CrossRef]
- Liu, X.; Hao, G.; Li, B.; Chen, Y. Experimental study on the electrohydrodynamic deformation of droplets in a combined DC electric field and shear flow field. Fundam. Res. 2021, in press. [Google Scholar] [CrossRef]
- Burgmann, S.; Krämer, V.; Rohde, M.; Dues, M. Uwe Janoske Inner and outer flow of an adhering droplet in shear flow. Int. J. Multiph. Flow 2022, 153, 104140. [Google Scholar] [CrossRef]
- Wang, C.; Liu, R.; Jiang, Y.; Wang, G.; Luan, H. Effect of shear-induced contact area and aperture variations on nonlinear flow behaviors in fractal rock fractures. J. Rock Mech. Geotech. Eng. 2022, in press. [Google Scholar] [CrossRef]
- Vahabi, M. The effect of thixotropy on deformation of a single droplet under simple shear flow. Comput. Math. Appl. 2022, 117, 206–215. [Google Scholar] [CrossRef]
- Novikau, I.S.; Novak, E.V.; Pyanzina, E.S.; Kantorovich, S.S. Behaviour of a magnetic nanogel in a shear flow. J. Mol. Liq. 2022, 346, 118056. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Isothermal shear flows of viscous vortex fluids in a thin slit. Procedia Struct. Integr. 2022, 40, 82–89. [Google Scholar] [CrossRef]
- Xu, W.T.; Li, S.S.; Pan, L.M.; Li, Z.C. Experimental investigation about the lift force of a single bubble in the water at a linear shear flow. Int. J. Multiph. Flow 2021, 145, 103819. [Google Scholar] [CrossRef]
- Tanaka, S.; Nagasawa, Y. Direct observation of the deformation behavior of agglomerates in a highly concentrated slurry under startup shear flow. Open Ceram. 2022, 9, 100209. [Google Scholar] [CrossRef]
- Rohde, M.; Barwari, B.; Burgmann, S. Uwe Janoske Droplet motion induced by superposition of shear flow and horizontal surface vibration. Int. J. Multiph. Flow 2022, 155, 104163. [Google Scholar] [CrossRef]
- Zhang, L.; Townsend, D.; Pellegrino, A.; Petrinic, N. Pure shear plastic flow and failure of titanium alloys under quasi-static and dynamic torsional loading. Mech. Mater. 2022, 167, 104262. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Tr. Inst. Mat. Mekhaniki UrO RAN 2020, 26, 79–87. [Google Scholar]
- Burmasheva, N.V.; Prosviryakov, E.Y. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters. Bull. Irkutsk State Univ. Ser. Math. 2020, 32, 33–48. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions for steady convective layered flows with a spatial acceleration. Russ. Math. 2021, 65, 8–16. [Google Scholar] [CrossRef]
- Cox, B.J.; Hill, J.M. Flow through a circular tube with a permeable Navier slip boundary. Nanoscale Res. Lett. 2021, 6, 389. [Google Scholar] [CrossRef] [Green Version]
- Werdelmann, B.; Koch, R.; Krebs, W.; Bauer, H.J. An approach for permeable boundary conditions in SPH. J. Comput. Phys. 2021, 444, 110562. [Google Scholar] [CrossRef]
- Shen, S.; Wang, L.; Zhou, A.; Xu, Y.; Xia, X. Two-dimensional plane strain consolidation for unsaturated soils with a strip-shaped distributed permeable boundary. Comput. Geotech. 2021, 137, 104273. [Google Scholar] [CrossRef]
- Surya, D.; Gupta, A.K. Thermal instability in a liquid layer with permeable boundaries under the influence of variable gravity. Eur. J. Mech.-B/Fluids 2022, 91, 219–225. [Google Scholar] [CrossRef]
- Kausar, M.S.; Hussanan, A.; Waqas, M.; Mamat, M. Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation. Chin. J. Phys. 2022, 78, 435–452. [Google Scholar] [CrossRef]
- Pirov, R. On some overdetermined systems of three differential equations in second-order partial derivatives. Uchenye Zap. Kazan. Univ. Seriya Fiz.-Mat. Nauk. 2016, 158, 544–556. [Google Scholar]
- Akkerman, V.B.; Zaytsev, M.L. Dimension reduction in fluid dynamics equations. Comput. Math. Math. Phys. 2011, 51, 1418. [Google Scholar] [CrossRef]
- Akkerman, V.B.; Zaytsev, M.L. Reduction of overdetermined differential equations of mathematical physics. Math. Phys. Comput. Simul. 2017, 20, 43–67. [Google Scholar]
- Baranovskii, E.S.; Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Navier–Stokes equations with couple stresses. Symmetry 2021, 13, 1355. [Google Scholar] [CrossRef]
- Sharma, R.P.; Shaw, S. MHD non-newtonian fluid flow past a stretching sheet under the influence of non-linear radiation and viscous dissipation. J. Appl. Comput. Mech. 2022, 8, 949–961. [Google Scholar]
- Badruddin, I.A.; Khan, T.Y.; Baig, M.A. Aiding Flow Dufour effect and viscous dissipation in square porous annulus. Mater. Today Proc. 2020, 24, 1322–1331. [Google Scholar] [CrossRef]
- Rghif, Y.; Zeghmati, B.; Bahraoui, F. Modeling the influences of a phase change material and the Dufour effect on thermal performance of a salt gradient solar pond. Int. J. Therm. Sci. 2021, 166, 106979. [Google Scholar] [CrossRef]
- Hu, J.T.; Mei, S.J. Combined thermal and moisture convection and entropy generation in an inclined rectangular enclosure partially saturated with porous wall: Nonlinear effects with Soret and Dufour numbers. Int. J. Mech. Sci. 2021, 199, 106412. [Google Scholar] [CrossRef]
- Lin, C.C. Note on a class of exact solutions in magneto-hydrodynamics. Arch. Ration. Mech. Anal. 1958, 1, 391–395. [Google Scholar] [CrossRef]
- Sidorov, A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. J. Appl. Mech. Tech. Phys. 1989, 30, 197–203. [Google Scholar] [CrossRef]
- Aristov, S.N. Eddy Currents in Thin Liquid Layers. Bachelor’s Thesis, Institute of Automation and Control Processes, Vladivostok, Russia, 1990. [Google Scholar]
- Gershuni, G.Z.; Zhukhovitskii, E.M. Convective Stability of Incompressible Fluids; Keter Publishing House: Jerusalem, Israel, 1976; 330p. [Google Scholar]
- Kochin, N.E.; Kibel, I.A.; Radok, J.R.M.; Roze, N.V. Theoretical Hydromechanics; Interscience Publishers: New York, NY, USA, 1964; 569p. [Google Scholar]
- Krasnov, N.F.; Koshevoy, V.N.; Danilov, A.N. Aerodynamics in Questions and Tasks: Manual for Technical Universities; Vishaya Shkola: Moscow, Russia, 1985. [Google Scholar]
- Altshul, A.D.; Kiselev, N.P. Hydraulics and Aerodynamics. Fundamentals of Fluid Mechanics; Stroyizdat: Moscow, Russia, 1964. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids; McGRAW-HILL: New York, NY, USA, 2001; 803p. [Google Scholar]
- Cui, X.; Jia, B. Thermal effect on the instability of annular liquid jet. Aerospace 2021, 8, 382. [Google Scholar] [CrossRef]
- Vakhnenko, V.O. Similarity in stationary motions of gas and two-phase medium with incompressible component. Int. J. Non-Linear Mech. 2011, 46, 1356–1360. [Google Scholar] [CrossRef]
- Sun, Y.; Shu, C.; Teo, C.J.; Wang, Y.; Yang, L.M. Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 2015, 300, 492–519. [Google Scholar] [CrossRef]
- Katopodes, N.D. Free-Surface Flow; Chapter 11—Stratified Flow; Butterworth-Heinemann: Oxford, UK, 2019; pp. 780–839. [Google Scholar]
- Zhao, J.; Zhang, J.; Chen, C.; Huang, H.; Yang, R. Experimental investigation on the burning behaviors of thin-layer transformer oil on a water layer. Process Saf. Environ. Prot. 2020, 139, 89–97. [Google Scholar] [CrossRef]
- Cao, J.; Cen, H.; Zhu, Z.; Chen, M.; Guo, X.; Chen, Z. Effect of external direct current electric field on the inhibition behavior of cyclohexylamine and sodium nitrite under thin electrolyte layers. J. Phys. Chem. Solids 2021, 148, 109707. [Google Scholar] [CrossRef]
- Kudo, M.; Ochi, T. Pattern formation in buoyant-thermocapillary convection currents in thin liquid layers: A comparison of numerical simulations and experiments. Int. J. Heat Mass Transf. 2020, 160, 120164. [Google Scholar] [CrossRef]
- Petrov, N.P.; Reynolds, O.; Sommerfeld, A.; Michel, A.; Zhukovsky, N.E.; Chaplygin, S.A. Hydrodynamic Theory of Lubrication; State Technical and Theoretical Publishing House: Moscow, Russia, 1934; 575p. [Google Scholar]
- Reynolds, О. On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. 1894, 186, 123–161. [Google Scholar]
- Ladyzhenskaya, O.A. Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid; Nauka, C., Ed.; Nauka: Moscow, Russia, 1970; 288p. [Google Scholar]
- Couette, M. Etudes sur le frottement des liquids. Ann. Chim. Phys. 1890, 21, 433–510. [Google Scholar]
- Poiseuille, J. Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres. C. R. Hebd. Des Séances De L’acadmemie Des Sci. 1840, 11, 961–967. Available online: https://www.biodiversitylibrary.org/item/20657#page/971/mode/1up (accessed on 31 August 2022).
- Poiseuille, J. Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres. C. R. Hebd. Des Séances De L’acadmemie Des Sci. 1840, 11, 1041–1048. Available online: https://www.biodiversitylibrary.org/item/20657#page/1051/mode/1up (accessed on 31 August 2022).
- Poiseuille, J. Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres (suite). Comptes Rendus Hebd. Des Séances De L’acadmemie Des Sci. 1841, 12, 112–115. Available online: https://www.biodiversitylibrary.org/item/81357#page/122/mode/1up (accessed on 31 August 2022).
- Von Karman, T. Über laminare und turbulente Reibung. Z. Angew. Math. und Mech. 1921, 1, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Ekman, V.W. On the influence of the Earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys. 1905, 2, 1–52. [Google Scholar]
- Birikh, R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 1966, 7, 43–44. [Google Scholar] [CrossRef]
- Ostroumov, G.A. Free Convection under the Condition of the Internal Problem; NACA Technical Memorandum 1407; National Advisory Committee for Aeronautics: Washington, DC, USA, 1958.
- Burmasheva, N.V.; Prosviryakov, E.Y. Thermocapillary convection of a vertical swirling liquid. Theor. Found. Chem. Eng. 2020, 54, 230–239. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burmasheva, N.V.; Prosviryakov, E.Y. Influence of the Dufour Effect on Shear Thermal Diffusion Flows. Dynamics 2022, 2, 367-379. https://doi.org/10.3390/dynamics2040021
Burmasheva NV, Prosviryakov EY. Influence of the Dufour Effect on Shear Thermal Diffusion Flows. Dynamics. 2022; 2(4):367-379. https://doi.org/10.3390/dynamics2040021
Chicago/Turabian StyleBurmasheva, Natalya V., and Evgeniy Yu. Prosviryakov. 2022. "Influence of the Dufour Effect on Shear Thermal Diffusion Flows" Dynamics 2, no. 4: 367-379. https://doi.org/10.3390/dynamics2040021
APA StyleBurmasheva, N. V., & Prosviryakov, E. Y. (2022). Influence of the Dufour Effect on Shear Thermal Diffusion Flows. Dynamics, 2(4), 367-379. https://doi.org/10.3390/dynamics2040021