Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review
Abstract
1. Introduction
1.1. Background on Osteoarthritis
1.2. Importance of Early Detection
1.3. Limitations of Current Diagnostic Approaches
2. Pathophysiology of Osteoarthritis
2.1. Joint Structure and Degenerative Change
2.2. Role of Inflammation in OA Progression
3. Fibroblast-like Synoviocytes (FLSs) in Osteoarthritis
3.1. Introduction to FLSs and Their Role in OA Pathogenesis
3.2. Cytokine and Inflammatory Responses in FLSs
4. Biomarkers in Osteoarthritis
4.1. Overview of Biomarkers: IL-6, TNF-α and MPO
4.1.1. Interleukin-6 (IL-6)
4.1.2. Tumour Necrosis Factor Alpha (TNF-α)
4.1.3. Myeloperoxidase (MPO)
4.2. Relevance and Diagnostic Utility
4.3. Importance of Sample Type
4.4. Enzyme Linked Immunosorbent Assay (ELISA)
5. Statistical and Modelling Approaches in OA Research
5.1. Basic Statistical Techniques
5.1.1. Normality Testing
5.1.2. Data Imputation and Pre-Processing
5.1.3. Data Transformation
5.2. Advanced Statistical Techniques
5.2.1. Rank-Based ANCOVA
5.2.2. Regression Analysis
5.2.3. Discriminant Function Analysis (DFA)
5.2.4. Survival Analysis (Cox Regression)
5.3. Machine Learning and Clustering Methods
5.3.1. Synthetic Data Generation
5.3.2. Hierarchical Clustering Analysis (HCA)
5.3.3. k-Nearest Neighbour (kNN) Analysis
5.3.4. Receiver Operating Characteristic (ROC) Curves
5.3.5. t-Distributed Stochastic Neighbour Embedding (t-SNE)
6. Challenges and Limitations in OA Biomarker Research
6.1. Individual Variability and Lifestyle Factors
6.2. Sample Size Limitations and Statistical Power
6.3. Use of Synthetic Data to Overcome Research Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Coleman, L.J.; Byrne, J.L.; Edwards, S.; O’Hara, R. Utilising Discriminant Function Analysis (DFA) for Classifying Osteoarthritis (OA) Patients and Volunteers Based on Biomarker Concentration. Diagnostics 2024, 14, 1660. [Google Scholar] [CrossRef]
- Thijssen, E.; van Caam, A.; van der Kraan, P.M. Obesity and osteoarthritis, more than just wear and tear: Pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 2015, 54, 588–600. [Google Scholar] [CrossRef]
- Coleman, L.J.; Byrne, J.L.; Edwards, S.; O’Hara, R. Evaluating Interleukin-6, Tumour Necrosis Factor Alpha, and Myeloperoxidase as Biomarkers in Severe Osteoarthritis Patients: A Biostatistical Perspective. LabMed 2025, 2, 8. [Google Scholar] [CrossRef]
- Man, G.S.; Mologhianu, G. Osteoarthritis pathogenesis—A complex process that involves the entire joint. J. Med. Life 2014, 7, 37–41. [Google Scholar]
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.N.; Gorelik, A.; Berkovic, D.; Buchbinder, R. The projected burden of arthritis among adults and children in Australia to the year 2040: A population-level forecasting study. Lancet Rheumatol. 2025, 7, e187–e196. [Google Scholar] [CrossRef]
- Fernandes, L.; Hagen, K.; Bijlsma, J. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Ann. Rheum. Dis. 2013, 72, 1125–1135. [Google Scholar] [CrossRef]
- Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M.; et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Li, H.-Z.; Liang, X.-Z.; Sun, Y.-Q.; Jia, H.-F.; Li, J.-C.; Li, G. Global, regional, and national burdens of osteoarthritis from 1990 to 2021: Findings from the 2021 global burden of disease study. Front. Med. 2024, 11, 1476853. [Google Scholar] [CrossRef]
- Poulet, B.; Staines, K.A. New developments in osteoarthritis and cartilage biology. Curr. Opin. Pharmacol. 2016, 28, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Goldring, S.R. Osteoarthritis. J. Cell. Physiol. 2007, 213, 626–634. [Google Scholar] [CrossRef]
- Litwic, A.; Edwards, M.H.; Dennison, E.M.; Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 2013, 105, 185–199. [Google Scholar] [CrossRef]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Jolles, B.M.; Bogoch, E.R. Posterior versus lateral surgical approach for total hip arthroplasty in adults with osteoarthritis. Cochrane Database Syst. Rev. 2006, 2006, CD003828. [Google Scholar] [CrossRef]
- Wang, L.-J.; Zeng, N.; Yan, Z.-P.; Li, J.-T.; Ni, G.-X. Post-traumatic osteoarthritis following ACL injury. Arthritis Res. Ther. 2020, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.G.; Seale, P.; Furman, D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. NPJ Aging 2024, 10, 34. [Google Scholar] [CrossRef]
- Burke, H.B. Predicting Clinical Outcomes Using Molecular Biomarkers. Biomark. Cancer 2016, 8, 89–99. [Google Scholar] [CrossRef]
- Zhang, W.; Ouyang, H.; Dass, C.; Xu, J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016, 4, 15040. [Google Scholar] [CrossRef]
- Usher, K.M.; Zhu, S.; Mavropalias, G.; Carrino, J.A.; Zhao, J.; Xu, J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 333–339. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Taylor & Francis: Abingdon, UK, 1990. [Google Scholar]
- Conover, W.; Iman, R.L. Analysis of covariance using the rank transformation. Biometrics 1982, 38, 715–724. [Google Scholar] [CrossRef]
- Blagojevic, M.; Jinks, C.; Jeffery, A.; Jordan, K.P. Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2010, 18, 24–33. [Google Scholar] [CrossRef]
- Kumavat, R.; Kumar, V.; Malhotra, R.; Pandit, H.; Jones, E.; Ponchel, F.; Biswas, S. Biomarkers of Joint Damage in Osteoarthritis: Current Status and Future Directions. Mediat. Inflamm. 2021, 2021, 5574582. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.J.; Eyles, J.P.; Hunter, D.J. Hip Osteoarthritis: Etiopathogenesis and Implications for Management. Adv. Ther. 2016, 33, 1921–1946. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.; Englund, M.; Struglics, A.; Lohmander, L.S. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthr. Cartil. 2015, 23, 1906–1914. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries: Osteoarthritis. Am. J. Sports Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Song, J.; Felson, D.T.; Cahue, S.; Shamiyeh, E.; Dunlop, D.D. The Role of Knee Alignment in Disease Progression and Functional Decline in Knee Osteoarthritis. JAMA 2001, 286, 188–195. [Google Scholar] [CrossRef]
- Fu, Y.; Batushansky, A.; Kinter, M.; Huebner, J.L.; Kraus, V.B.; Griffin, T.A.-O. Effects of Leptin and Body Weight on Inflammation and Knee Osteoarthritis Phenotypes in Female Rats. JBMR Plus 2023, 7, e10754. [Google Scholar] [CrossRef]
- Massengale, M.; Reichmann, W.M.; Losina, E.; Solomon, D.H.; Katz, J.N. The relationship between hand osteoarthritis and serum leptin concentration in participants of the Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 2012, 14, R132. [Google Scholar] [CrossRef]
- Collins, K.A.-O.; Lenz, K.L.; Welhaven, H.A.-O.; Ely, E.A.-O.; Springer, L.A.-O.; Paradi, S.A.-O.; Tang, R.A.-O.; Braxton, L.A.-O.; Akk, A.A.-O.; Yan, H.A.-O.; et al. Adipose-derived leptin and complement factor D mediate osteoarthritis severity and pain. Sci. Adv. 2025, 11, eadt5915. [Google Scholar] [CrossRef]
- Brogren, E.; Andersson, M.; Westenius, M.; Wittrup, J.; Zimmerman, M. Associations between hand osteoarthritis, obesity and lipid metabolism: A cross-sectional study of the Halland County Osteoarthritis (HALLOA) cohort. BMC Musculoskelet. Disord. 2024, 25, 944. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, S.; Gonçalves, H.; Pimenta, M.; Martins, A.; Costa, L.; Guimarães, T.; Rodrigues, A.; Lucas, R. Central obesity and radiographic severity are associated with symptomatic hand osteoarthritis: A population-based cross-sectional study. Rheumatol. Int. 2025, 45, 143. [Google Scholar] [CrossRef]
- Cinthuja, P.A.-O.; Krishnamoorthy, N.; Shivapatham, G. Effective interventions to improve long-term physiotherapy exercise adherence among patients with lower limb osteoarthritis. A systematic review. BMC Musculoskelet. Disord. 2022, 23, 147. [Google Scholar] [CrossRef]
- Alghamdi, M.A.A.; Olney, S.; Costigan, P. Exercise treatment for osteoarthritis disability. Ann. Saudi Med. 2004, 24, 326–331. [Google Scholar] [CrossRef]
- Clarson, L.E.; Nicholl, B.I.; Bishop, A.; Daniel, R.; Mallen, C.D. Discussing prognosis with patients with osteoarthritis: A cross-sectional survey in general practice. Clin. Rheumatol. 2016, 35, 1011–1017. [Google Scholar] [CrossRef]
- Edwards, S., Mr. Stewart Edwards Hip and Knee Surgeon. Available online: https://www.hipandkneesurgery.ie/ (accessed on 8 February 2022).
- Vargo, B.D. Exercise: How Much Is Enough? Available online: https://www.arthritis.org/health-wellness/healthy-living/physical-activity/getting-started/exercise-how-much-is-enough (accessed on 18 March 2025).
- Yeap, S.S.; Abu Amin, S.R.; Baharuddin, H.; Koh, K.C.; Lee, J.K.; Lee, V.K.M.; Mohamad Yahaya, N.H.; Tai, C.C.; Tan, M.P. A Malaysian Delphi consensus on managing knee osteoarthritis. BMC Musculoskelet. Disord. 2021, 22, 514. [Google Scholar] [CrossRef]
- Magni, A.; Agostoni, P.; Bonezzi, C.; Massazza, G.; Menè, P.; Savarino, V.; Fornasari, D. Management of Osteoarthritis: Expert Opinion on NSAIDs. Pain. Ther. 2021, 10, 783–808. [Google Scholar] [CrossRef]
- Malemud, C.J. Anticytokine therapy for osteoarthritis: Evidence to date. Drugs Aging 2010, 27, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Bolten, W.W. NSAIDs. In Local Treatment of Inflammatory Joint Diseases; Kampen, W.U., Fischer, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Ayhan, E.; Kesmezacar, H.; Akgun, I. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the Knee osteoarthritis. World J. Orthop. 2014, 5, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.; Michaelis, M.; Ladel, C.; Siebuhr, A.; Bihlet, A.; Andersen, J.; Guehring, H.; Christiansen, C.; Bay-Jensen, A.; Kraus, V. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: Lessons learned from failures and opportunities for the future. Osteoarthr. Cartil. 2016, 24, 2013–2021. [Google Scholar] [CrossRef]
- Stefanicka-Wojtas, D.; Kurpas, D. Personalised Medicine-Implementation to the Healthcare System in Europe (Focus Group Discussions). J. Pers. Med. 2023, 13, 380. [Google Scholar] [CrossRef]
- Estee, M.M.; Cicuttini, F.M.; Page, M.J.; Wluka, A.E.; Wang, Y. Efficacy of tumor necrosis factor inhibitors in hand osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Osteoarthr. Cartil. Open 2023, 5, 100404. [Google Scholar] [CrossRef]
- Grunke, M.; Schulze-Koops, H. Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade. Ann. Rheum. Dis. 2006, 65, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, T.J.; Marks, J.A. A systematic review of the efficacy and general safety of antibodies to NGF in the treatment of OA of the hip or knee. Osteoarthr. Cartil. 2015, 23, S8–S17. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Perry, E.; Huebner, J.L.; Katz, B.; Li, Y.J.; Kraus, V.B. Biomarkers of inflammation–LBP and TLR—Predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthr. Cartil. 2018, 26, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.D.; Mazzuca, S.A.; Katz, B.P.; Lane, K.A.; Buckwalter, K.A.; Yocum, D.E.; Wolfe, F.; Schnitzer, T.J.; Moreland, L.W.; Bradley, J.D.; et al. Effects of doxycycline on progression of osteoarthritis: Results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 2005, 52, 2015–2025. [Google Scholar] [CrossRef]
- Hunter, D.J. Pharmacologic therapy for osteoarthritis—The era of disease modification. Nat. Rev. Rheumatol. 2010, 7, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, J. The Role of Synovial Macrophages in Rheumatoid Arthritis and Osteoarthritis: Its implications for Radiosynovectomy. In Local Treatment of Inflammatory Joint Diseases, 1st ed.; Kampen, W.U., Fischer, M., Eds.; Springer: Cham, Switzerland, 2015; Volume VIII. [Google Scholar]
- Wu, K.-C.; Chang, Y.-H.; Ding, D.-C.; Lin, S.-Z. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int. J. Mol. Sci. 2024, 25, 12911. [Google Scholar] [CrossRef]
- Householder, N.A.; Raghuram, A.; Agyare, K.; Thipaphay, S.; Zumwalt, M. A Review of Recent Innovations in Cartilage Regeneration Strategies for the Treatment of Primary Osteoarthritis of the Knee: Intra-articular Injections. Orthop. J. Sports Med. 2023, 11, 23259671231155950. [Google Scholar] [CrossRef]
- Burnett, R.S.J.; Abos, D.J.B.M.J. Total hip arthroplasty: Techniques and results. Br. Columbia Med. J. 2010, 52, e64. [Google Scholar]
- Molt, M.; Toksvig-Larsen, S. Similar early migration when comparing CR and PS in Triathlon™ TKA: A prospective randomised RSA trial. Knee 2014, 21, 949–954. [Google Scholar] [CrossRef]
- Pan, B.; Yao, P.; Ma, J.; Lin, X.; Zhou, L.; Lin, C.; Zhang, Y.; Lin, B.; Lin, C. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front. Immunol. 2024, 15, 1482361. [Google Scholar] [CrossRef]
- Livshits, G.; Zhai, G.; Hart, D.J.; Kato, B.S.; Wang, H.; Williams, F.M.K.; Spector, T.D. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford study. Arthritis Rheum. 2009, 60, 2037–2045. [Google Scholar] [CrossRef]
- Stannus, O.; Jones, G.; Cicuttini, F.; Parameswaran, V.; Quinn, S.; Burgess, J.; Ding, C. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr. Cartil. 2010, 18, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Tenti, S.; Pulsatelli, L.; Addimanda, O. Could myeloperoxidase represent a useful biomarker for erosive osteoarthritis of the hand? Scand. J. Rheumatol. 2018, 47, 515–517. [Google Scholar] [CrossRef]
- Benito, M.J.; Veale, D.J.; FitzGerald, O.; van den Berg, W.B.; Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 2005, 64, 1263–1267. [Google Scholar] [CrossRef]
- Machado, C.R.L.; Resende, G.G.; Macedo, R.B.V.; do Nascimento, V.C.; Branco, A.S.; Kakehasi, A.M.; Andrade, M.V. Fibroblast-like synoviocytes from fluid and synovial membrane from primary osteoarthritis demonstrate similar production of interleukin 6, and metalloproteinases 1 and 3. Clin. Exp. Rheumatol. 2019, 37, 306–309. [Google Scholar]
- Dell’Isola, A.; Allan, R.; Smith, S.L.; Marreiros, S.S.; Steultjens, M. Identification of clinical phenotypes in knee osteoarthritis: A systematic review of the literature. BMC Musculoskelet. Disord. 2016, 17, 425. [Google Scholar] [CrossRef]
- Raut, R.D.; Chakraborty, A.A.-O.; Neogi, T.; Albro, M.; Snyder, B.; Schaer, T.A.-O.; Zhang, C.A.-O.; Grinstaff, M.A.-O.; Bais, M.A.-O. A multi-tissue human knee single-cell atlas identifies that osteoarthritis reduces regenerative tissue stem cells while increasing inflammatory pain macrophages. Commun. Biol. 2025, 8, 1146. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, M.J.; Nesti, L.J.; Sharkey, P.F.; Parvizi, J. Myeloperoxidase and chlorinated peptides in osteoarthritis: Potential biomarkers of the disease. J. Orthop. Res. 2007, 25, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef]
- Damerau, A.; Rosenow, E.; Alkhoury, D.; Buttgereit, F.; Gaber, T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front. Immunol. 2024, 15, 1385006. [Google Scholar] [CrossRef]
- Tong, L.; Yu, H.; Huang, X.; Shen, J.; Xiao, G.; Chen, L.; Wang, H.; Xing, L.; Chen, D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 2022, 10, 60. [Google Scholar] [CrossRef]
- Klein-Wieringa, I.R.; de Lange-Brokaar, B.J.; Yusuf, E.; Andersen, S.N.; Kwekkeboom, J.C.; Kroon, H.M.; van Osch, G.J.; Zuurmond, A.M.; Stojanovic-Susulic, V.; Nelissen, R.G.; et al. Inflammatory Cells in Patients with Endstage Knee Osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad. J. Rheumatol. 2016, 43, 771–778. [Google Scholar] [CrossRef]
- Berlinberg, A.; Ashbeck, E.L.; Roemer, F.W.; Guermazi, A.; Hunter, D.J.; Westra, J.; Trost, J.; Kwoh, C.K. Diagnostic performance of knee physical exam and participant-reported symptoms for MRI-detected effusion-synovitis among participants with early or late stage knee osteoarthritis: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2019, 27, 80–89. [Google Scholar] [CrossRef]
- Conaghan, P.G. Parallel evolution of OA phenotypes and therapies. Nat. Rev. Rheumatol. 2013, 9, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 580–592. [Google Scholar] [CrossRef]
- Jarraya, M.; Guermazi, A.; Roemer, F.W. Osteoarthritis year in review 2023: Imaging. Osteoarthr. Cartil. 2023, 32, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Collins, J.E.; Deveza, L.; Hoffmann, S.C.; Kraus, V.B. Biomarkers in osteoarthritis: Current status and outlook—the FNIH Biomarkers Consortium PROGRESS OA study. Skelet. Radiol. 2023, 52, 2323–2339. [Google Scholar] [CrossRef]
- Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2011, 25, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Welhaven, H.D.; Welfley, A.H.; June, R.K. Osteoarthritis Year in Review 2024: Molecular biomarkers of osteoarthritis. Osteoarthr. Cartil. 2024, 33, 67–87. [Google Scholar] [CrossRef]
- He, B.; Wu, J.P.; Kirk, T.B.; A Carrino, J.; Xiang, C.; Xu, J. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res. Ther. 2014, 16, 205. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Swift, B.J.; Becker, T.; Squelch, A.; Wang, A.; Zheng, Y.; Zhao, X.; Xu, J.; Xue, W.; Zheng, M.; et al. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating. J. Microsc. 2017, 266, 273–287. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Tardif, G.; Paiement, P.; Pelletier, J.-P. Common Biochemical and Magnetic Resonance Imaging Biomarkers of Early Knee Osteoarthritis and of Exercise/Training in Athletes: A Narrative Review. Diagnostics 2021, 11, 1488. [Google Scholar] [CrossRef]
- Schiphof, D.; Boers, M.; A Bierma-Zeinstra, S.M.A. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann. Rheum. Dis. 2008, 67, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.D.; Sassoon, A.A.; Fernando, N.D. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin. Orthop. Relat. Res. 2016, 474, 1886–1893. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Hunter, D.J.; Maillefert, J.F.; Reichmann, W.M.; Losina, E. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group. Osteoarthr. Cartil. 2011, 19, 606–610. [Google Scholar] [CrossRef]
- Oei, E.H.G.; Runhaar, J. Imaging of early-stage osteoarthritis: The needs and challenges for diagnosis and classification. Skelet. Radiol. 2023, 52, 2031–2036. [Google Scholar] [CrossRef]
- Ehmig, J.; Engel, G.; Lotz, J.; Lehmann, W.; Taheri, S.; Schilling, A.F.; Hosseini, A.S.A.; Panahi, B. MR-Imaging in Osteoarthritis: Current Standard of Practice and Future Outlook. Diagnostics 2023, 13, 2586. [Google Scholar] [CrossRef]
- Menashe, L.; Hirko, K.; Losina, E.; Kloppenburg, M.; Zhang, W.; Li, L.; Hunter, D. The diagnostic performance of MRI in osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2012, 20, 13–21. [Google Scholar] [CrossRef]
- Piccolo, C.L.; Mallio, C.A.; Vaccarino, F.; Grasso, R.F.; Zobel, B.B. Imaging of knee osteoarthritis: A review of multimodal diagnostic approach. Quant. Imaging Med. Surg. 2023, 13, 7582–7595. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Amano, K.; Link, T.M.; Ma, C.B. Advanced Imaging in Osteoarthritis. Sports Health 2016, 8, 418–428. [Google Scholar] [CrossRef]
- Jones, C.W.; Smolinski, D.; Willers, C.; Yates, P.J.; Keogh, A.; Fick, D.; Kirk, T.B.; Zheng, M.H. Laser scanning confocal arthroscopy of a fresh cadaveric knee joint. Osteoarthr. Cartil. 2007, 15, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.C.; Mandalia, V.; Toms, A.; Winlove, C.P.; Brasselet, S. Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy. J. R. Soc. Interface 2019, 16, 20180611. [Google Scholar] [CrossRef] [PubMed]
- Stocco, E.; Belluzzi, E.; Contran, M.; Boscolo-Berto, R.; Picardi, E.; Guidolin, D.; Fontanella, C.G.; Olivotto, E.; Filardo, G.; Borile, G.; et al. Age-Dependent Remodeling in Infrapatellar Fat Pad Adipocytes and Extracellular Matrix: A Comparative Study. Front. Med. 2021, 8, 661403. [Google Scholar] [CrossRef]
- Ou, J.; Zhang, J.; Alswadeh, M.; Zhu, Z.; Tang, J.; Sang, H.; Lu, K. Advancing osteoarthritis research: The role of AI in clinical, imaging and omics fields. Bone Res. 2025, 13, 48. [Google Scholar] [CrossRef]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef]
- Mobasheri, A.; Henrotin, Y. Biomarkers of Osteoarthritis: A Review of Recent Research Progress on Soluble Biochemical Markers, Published Patents and Areas for Future Development. Recent Pat. Biomarkerse 2011, 1, 25–43. [Google Scholar] [CrossRef]
- Kraus, V.B.; McDaniel, G.; Huebner, J.L.; Stabler, T.V.; Pieper, C.F.; Shipes, S.W.; Petry, N.A.; Low, P.S.; Shen, J.; McNearney, T.A.; et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y. Osteoarthritis in year 2021: Biochemical markers. Osteoarthr. Cartil. 2022, 30, 237–248. [Google Scholar] [CrossRef]
- Ganeshkumar, P.; Gopalakrishnan, S. Systematic reviews and meta-analysis: Understanding the best evidence in primary healthcare. J. Fam. Med. Prim. Care 2013, 2, 9–14. [Google Scholar] [CrossRef]
- Riley, R.D.; Abrams, K.R.; Lambert, P.C.; Sutton, A.J.; Altman, D.G. Where next for evidence synthesis of prognostic marker studies? Improving the quality and reporting of primary studies to facilitate clinically relevant evidence-based results. In Advances in Statistical Methods and Health Sciences; Auget, J.-L.B.N., Mounir, M., Geert, M., Eds.; Birkhauser: Boston, MA, USA, 2007; pp. 39–58. [Google Scholar]
- Henrotin, Y.; Sanchez, C.; Cornet, A.; Van de Put, J.; Douette, P.; Gharbi, M. Soluble biomarkers development in osteoarthritis: From discovery to personalized medicine. Biomarkers 2015, 20, 540–546. [Google Scholar] [CrossRef]
- Hannani, M.T.; Thudium, C.S.; Karsdal, M.A.; Ladel, C.; Mobasheri, A.; Uebelhoer, M.; Larkin, J.; Bacardit, J.; Struglics, A.; Bay-Jensen, A.-C. From biochemical markers to molecular endotypes of osteoarthritis: A review on validated biomarkers. Expert Rev. Mol. Diagn. 2024, 24, 23–38. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Benjamin, M.; Kaiser, E.; Milz, S. Structure-function relationships in tendons: A review. Am. J. Anat. 2008, 212, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D. The Normal Synovium. Open Rheumatol. J. 2011, 5, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Rainbow, R.; Ren, W.; Zeng, L. Inflammation and Joint Tissue Interactions in OA: Implications for Potential Therapeutic Approaches. Arthritis 2012, 2012, 741582. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Harsulkar, A.; Märtson, A.-G.; Suutre, S.; Märtson, A.; Koks, S. Mast Cells Differentiated in Synovial Fluid and Resident in Osteophytes Exalt the Inflammatory Pathology of Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 541. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef]
- Han, D.; Fang, Y.; Tan, X.; Jiang, H.; Gong, X.; Wang, X.; Hong, W.; Tu, J.; Wei, W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J. Cell. Mol. Med. 2020, 24, 9518–9532. [Google Scholar] [CrossRef] [PubMed]
- Chisari, E.; Yaghmour, K.; Khan, W. The effects of TNF-alpha inhibition on cartilage: A systematic review of preclinical studies. Osteoarthr. Cartil. 2020, 28, 708–718. [Google Scholar] [CrossRef]
- Zhao, F.; Dong, H.; Huang, H.; Gao, G.; Wu, R.; Shi, Y.; Ju, X.; Li, C.; Xu, Y.; Wang, J. The Application of Arthroscopic Techniques in the Diagnosis and Treatment of Hip-Related Conditions in China. Orthop. Surg. 2021, 13, 1697–1706. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X.; Li, L.; Li, Z.; Zhang, Y.; Fan, P. Comparison of Patient Satisfaction Between Medial Pivot Prostheses and Posterior-Stabilized Prostheses in Total Knee Arthroplasty. Orthop. Surg. 2020, 12, 836–842. [Google Scholar] [CrossRef]
- Lewis, J.; Smith, R.C. Surgery for Osteoarthritis of the Knee. In Osteoarthritis—Diagnosis, Treatment and Surgery; Chen, Q., Ed.; Intechopen: London, UK, 2012. [Google Scholar]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.-P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, Z.; Hu, N.; Liang, X.; Huang, W. Leonurine Hydrochloride Suppresses Inflammatory Responses and Ameliorates Cartilage Degradation in Osteoarthritis via NF-κB Signaling Pathway. Inflammation 2019, 43, 146–154. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, S.M.; Moon, Y.G.; Jung, Y.S.; Lee, J.H.; Saralamma, V.V.G.; Kim, Y.S.; Pak, J.E.; Lee, H.J.; Kim, G.S.; et al. Membrane-Free Stem Cell Components Inhibit Interleukin-1α-Stimulated Inflammation and Cartilage Degradation In Vitro and In Vivo: A Rat Model of Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4869. [Google Scholar] [CrossRef] [PubMed]
- Hlaing, T.T.; E Compston, J. Biochemical markers of bone turnover—Uses and limitations. Ann. Clin. Biochem. 2014, 51, 189–202. [Google Scholar] [CrossRef]
- Shen, J.; Abu-Amer, Y.; O’Keefe, R.J.; McAlinden, A. Inflammation and epigentic regulation. Connect. Tissue Res. 2016, 58, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Bresnihan, B.; Gogarty, M.; FitzGerald, O.; Dayer, J.-M.; Burger, D. Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: A control mechanism of cytokine production? Arthritis Res. Ther. 2004, 6, R563–R566. [Google Scholar] [CrossRef] [PubMed]
- de Lange-Brokaar, B.; Ioan-Facsinay, A.; van Osch, G.; Zuurmond, A.-M.; Schoones, J.; Toes, R.; Huizinga, T.; Kloppenburg, M. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthr. Cartil. 2012, 20, 1484–1499. [Google Scholar] [CrossRef] [PubMed]
- Warmink, K.; Vinod, P.; Korthagen, N.M.; Weinans, H.; Rios, J.L. Macrophage-Driven Inflammation in Metabolic Osteoarthritis: Implications for Biomarker and Therapy Development. Int. J. Mol. Sci. 2023, 24, 6112. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, X.; Tan, J.; Deng, C.; Wu, C.; Osterhoff, G.; Schopow, N. Genetic Biomarkers and Circulating White Blood Cells in Osteoarthritis: A Bioinformatics and Mendelian Randomization Analysis. Biomedicines 2025, 13, 90. [Google Scholar] [CrossRef]
- Chaney, S.; Vergara, R.; Qiryaqoz, Z.; Suggs, K.; Akkouch, A. The Involvement of Neutrophils in the Pathophysiology and Treatment of Osteoarthritis. Biomedicines 2022, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.V.; Lucerne, A.; Ravid, K. Immune and Inflammatory Properties of Megakaryocytes. Cells 2025, 14, 1053. [Google Scholar] [CrossRef]
- Blasioli, D.J.; Kaplan, D.L. The Roles of Catabolic Factors in the Development of Osteoarthritis. Tissue Eng. Part B Rev. 2014, 20, 355–363. [Google Scholar] [CrossRef]
- Iwanaga, T.; Shikichi, M.; Kitamura, H.; Yanase, H.; Nozawa-Inoue, K. Morphology and functional roles of synoviocytes in the joint. Arch. Histol. Cytol. 2000, 63, 17–31. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Zhang, S.; Li, Z.; Pei, Z.; Guan, Z. Effects of Tumor Necrosis Factor Alpha on the Expression of Programmed Cell Death Factor 5 in Arthritis. Orthop. Surg. 2019, 11, 698–704. [Google Scholar] [CrossRef]
- Kang, I.; Hundhausen, C.; Evanko, S.P.; Malapati, P.; Workman, G.; Chan, C.K.; Rims, C.; Firestein, G.S.; Boyle, D.L.; MacDonald, K.M.; et al. Crosstalk between CD4 T cells and synovial fibroblasts from human arthritic joints promotes hyaluronan-dependent leukocyte adhesion and inflammatory cytokine expression in vitro. Matrix Biol. Plus 2022, 14, 100110. [Google Scholar] [CrossRef]
- Alcaraz, M.J. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem. Pharmacol. 2021, 194, 114815. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chang, W.-A.; Wu, L.-Y.; Huang, C.-F.; Chen, C.-H.; Kuo, P.-L. Identification of Novel Genes in Osteoarthritic Fibroblast-Like Synoviocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int. J. Med. Sci. 2019, 16, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Coleman, L.J.; Byrne, J.L.; Edwards, S.; O’hara, R. Patient-Specific Variability in Interleukin-6 and Myeloperoxidase Responses in Osteoarthritis: Insights from Synthetic Data and Clustering Analysis. J. Pers. Med. 2025, 15, 17. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, L.; Cheng, C.; Shan, W.; Ma, R.; Yin, Z.; Zhu, C. Parallel comparison of fibroblast-like synoviocytes from the surgically removed hyperplastic synovial tissues of rheumatoid arthritis and osteoarthritis patients. BMC Musculoskelet. Disord. 2019, 20, 591. [Google Scholar] [CrossRef]
- Dayer, J.-M. From supernatants to cytokines: A personal view on the early history of IL-1, IL-1Ra, TNF and its inhibitor in rheumatology. Arthritis Res. Ther. 2018, 20, 101. [Google Scholar] [CrossRef]
- Stone, A.; Loeser, R.; Vanderman, K.; Long, D.; Clark, S.; Ferguson, C. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis. Osteoarthr. Cartil. 2014, 22, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Merten, O.-W. Advances in cell culture: Anchorage dependence. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140040. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, L.; Pan, J. Estradiol and proinflammatory cytokines stimulate ISG20 expression in synovial fibroblasts of patients with osteoarthritis. Intractable Rare Dis. Res. 2017, 6, 269–273. [Google Scholar] [CrossRef]
- Kim, H.A.; Cho, M.; Choi, H.Y.; Yoon, C.S.; Jhun, J.Y.; Oh, H.J.; Kim, H. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006, 54, 2152–2163. [Google Scholar] [CrossRef]
- Yaron, M.; Shirazi, I.; Yaron, I. eAnti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthr. Cartil. 1999, 7, 272–280. [Google Scholar] [CrossRef]
- Luca-Harari, B.; Ekelund, K.; van der Linden, M.; Staum-Kaltoft, M.; Hammerum, A.M.; Jasir, A. Clinical and Epidemiological Aspects of Invasive Streptococcus pyogenes Infections in Denmark during 2003 and 2004. J. Clin. Microbiol. 2008, 46, 79–86. [Google Scholar] [CrossRef]
- Li, K.; Liu, A.; Zong, W.; Dai, L.; Liu, Y.; Luo, R.; Ge, S.; Dong, G. Moderate exercise ameliorates osteoarthritis by reducing lipopolysaccharides from gut microbiota in mice. Saudi J. Biol. Sci. 2021, 28, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Burska, A.; Boissinot, M.; Ponchel, F. Cytokines as biomarkers in rheumatoid arthritis. Mediat. Inflamm. 2014, 2014, 545493. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Thudium, C.S.; Bay-Jensen, A.-C.; Maleitzke, T.; Geissler, S.; Duda, G.N.; Winkler, T. Biomarkers for osteoarthritis: Current status and future prospects. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101852. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Cai, X.; Yao, X.; Zhang, S.; Lan, W.; Jin, Z.; Tang, F.; Ma, W.; Yao, X.; Chen, C.; et al. The causal effect of cytokine cycling levels on osteoarthritis: A bidirectional Mendelian randomized study. Front. Immunol. 2024, 14, 1334361. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Fukuda, H.; Sakuma, Y.; Inage, K.; Takahashi, K.; Yamaura, I.; Shiratsuchi, H.; Ohtori, S.; Ichiro, Y. Tumor Necrosis Factor-Alpha (TNF-α) and Interleukin-6 (IL-6) Cytokines in the Injured Meniscus of Patients with Knee Subchondral Insufficiency Fractures: A Potential Association With Preoperative Pain. Cureus 2025, 17, e77734. [Google Scholar] [CrossRef]
- Wiegertjes, R.; Loo, F.A.J.v.d.; Davidson, E.N.B. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology 2020, 59, 2681–2694. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med. Sci. 2018, 6, 33. [Google Scholar] [CrossRef]
- Schurman, C.A.; Liu, Q.; Flores, I.; Hutchens, B. Proteomic analysis of human synovial biofluids associates fibrosis, inflammation, and oxidative stress proteins to osteoarthritis progression. In Proceedings of the ORS 2025 Annual Meeting, Phoenix, AZ, USA, 7–11 February 2025. [Google Scholar]
- Xu, J.; Yu, L.; Liu, F.; Wan, L.; Deng, Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front. Immunol. 2023, 14, 1222129. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef]
- Fonseca, J.; Santos, M.; Canhão, H.; Choy, E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun. Rev. 2009, 8, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Uciechowski, P.; Dempke, W.C. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Mabey, T.; Honsawek, S. Cytokines as biochemical markers for knee osteoarthritis. World J. Orthop. 2015, 6, 95–105. [Google Scholar] [CrossRef]
- Orita, S.; Koshi, T.; Mitsuka, T.; Miyagi, M.; Inoue, G.; Arai, G.; Ishikawa, T.; Hanaoka, E.; Yamashita, K.; Yamashita, M.; et al. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet. Disord. 2011, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Swärd, P.; Frobell, R.; Englund, M.; Roos, H.; Struglics, A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis)—A cross-sectional analysis. Osteoarthr. Cartil. 2012, 20, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Sharif, P.M.; Jabbari, P.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020, 130, 155066. [Google Scholar] [CrossRef]
- Ademowo, O.S.; Staunton, L.; FitzGerald, O.; Pennington, S.R. Biomarkers of Inflammatory Arthritis and Proteomics. In Genes and Autoimmunity—Intracellular Signaling and Microbiome Contribution; Genes and Autoimmunity; Stanilova, S.A., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Parameswaran, N.; Patial, S. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski, L.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef]
- Attur, M.; Krasnokutsky, S.; Zhou, H.; Samuels, J.; Chang, G.; Bencardino, J.; Rosenthal, P.; Rybak, L.; Huebner, J.L.; Kraus, V.B.; et al. The combination of an inflammatory peripheral blood gene expression and imaging biomarkers enhance prediction of radiographic progression in knee osteoarthritis. Arthritis Res. Ther. 2020, 22, 208. [Google Scholar] [CrossRef]
- Park, J.; Park, H.; Lee, Y.L.; Weon, S.; Kim, Y.-G.; Yang, J.-H.; Nam, B.; Jo, S.; Kim, T.-H. Blocking TNFα attenuates progressive cartilage matrix degradation in inflammatory arthritis. Exp. Ther. Med. 2021, 22, 808. [Google Scholar] [CrossRef]
- Malik, A.B.; Lo, S.K. Vascular endothelial adhesion molecules and tissue inflammation. Pharmacol. Rev. 1996, 48, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Michalaki, V.; Syrigos, K.; Charles, P.; Waxman, J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer 2004, 90, 2312–2316. [Google Scholar] [CrossRef]
- Bruunsgaard, H.; Ladelund, S.; Pedersen, A.N.; Schroll, M.; Jørgensen, T.; Pedersen, B.K. Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin. Exp. Immunol. 2003, 132, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Hawkins, C.L. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid. Redox Signal. 2020, 32, 957–981. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Kim, K.; Li, J.; Cho, J. Myeloperoxidase Negatively Regulates Neutrophil–Endothelial Cell Interactions by Impairing αMβ2 Integrin Function in Sterile Inflammation. Front. Med. 2018, 5, 134. [Google Scholar] [CrossRef]
- Strzepa, A.; Pritchard, K.A.; Dittel, B.N. Myeloperoxidase: A new player in autoimmunity. Cell. Immunol. 2017, 317, 1–8. [Google Scholar] [CrossRef]
- Girish, S.; Chandanwale, A.; Shyam, A. Myeloperoxidase as a potential biomarker in different stages of knee osteoarthritis. Int. J. Pharm. Sci. Res. 2012, 3, 4477–4481. [Google Scholar]
- Tang, W.W.; Katz, R.; Brennan, M.-L.; Aviles, R.J.; Tracy, R.P.; Psaty, B.M.; Hazen, S.L. Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am. J. Cardiol. 2009, 103, 1269–1274. [Google Scholar] [CrossRef]
- Punzi, L.; Ramonda, R.; Deberg, M.; Frallonardo, P.; Campana, C.; Musacchio, E.; Henrotin, Y. Coll2-1, Coll2-1NO2 and myeloperoxidase serum levels in erosive and non-erosive osteoarthritis of the hands. Osteoarthr. Cartil. 2012, 20, 557–561. [Google Scholar] [CrossRef]
- Deberg, M.; Dubuc, J.E.; Labasse, A.; Sanchez, C.; Quettier, E.; Bosseloir, A.; Crielaard, J.-M.; Henrotin, Y. One-year follow-up of Coll2-1, Coll2-1NO2 and myeloperoxydase serum levels in osteoarthritis patients after hip or knee replacement. Ann. Rheum. Dis. 2008, 67, 168–174. [Google Scholar] [CrossRef]
- Geneva-Popova, M.; Popova-Belova, S.; Popova, V.; Chompalov, K.; Batalov, A. Assessment of serum and synovial fluid MMP-3 and MPO as biomarkers for psoriatic arthritis and their relation to disease activity indices. Rheumatol. Int. 2022, 42, 1605–1615. [Google Scholar] [CrossRef]
- Bernotiene, E.; Bagdonas, E.; Kirdaite, G.; Bernotas, P.; Kalvaityte, U.; Uzieliene, I.; Thudium, C.S.; Hannula, H.; Lorite, G.S.; Dvir-Ginzberg, M.; et al. Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Front. Med. 2020, 7, 572977. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.A.; Degen, A.N.; Antunes, F.T.T.; da Rosa, L.G.; Ferraz, A.G.; Wiilland, E.; Vieira, L.B.; de Souza, A.H. Benefits of electroacupuncture and a swimming association when compared with isolated protocols in an osteoarthritis model. J. Tradit. Complement. Med. 2021, 12, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Ranstam, J. Why the P-value culture is bad and confidence intervals a better alternative. Osteoarthr. Cartil. 2012, 20, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W. FRANK E. HARRELL, Regression Modeling Strategies: With Applications, to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed. Heidelberg: Springer. Biometrics 2016, 72, 1006–1007. [Google Scholar] [CrossRef]
- Zhang, W.; Robertson, W.B.; Zhao, J.; Chen, W.; Xu, J. Emerging Trend in the Pharmacotherapy of Osteoarthritis. Front. Endocrinol. 2019, 10, 431. [Google Scholar] [CrossRef]
- Chubinskaya, S.; Hurtig, M.; Rueger, D.C. OP-1/BMP-7 in cartilage repair. Int. Orthop. 2007, 31, 773–781. [Google Scholar] [CrossRef]
- Li, H.-Z.; Zhang, J.-L.; Yuan, D.-L.; Xie, W.-Q.; Ladel, C.H.; Mobasheri, A.; Li, Y.-S. Role of signaling pathways in age-related orthopedic diseases: Focus on the fibroblast growth factor family. Mil. Med. Res. 2024, 11, 40. [Google Scholar] [CrossRef]
- Kumar, B.; Jha, L.A.; Pandey, P.; Iqbal, S.F.; Thaleshwari, S.; Banerjee, K.; Imran, M.; Anwaar, S.; Subedi, L.; Dubey, V.; et al. Unlocking the future of osteoarthritis: Material engineering and drug delivery confluence for advanced therapeutic approaches. J. Drug Deliv. Sci. Technol. 2024, 101, 106264. [Google Scholar] [CrossRef]
- Chevalier, X.; Giraudeau, B.; Conrozier, T.; Marliere, J.; Kiefer, P.; Goupille, P. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: A multicenter study. J. Rheumatol. 2005, 32, 1317–1323. [Google Scholar]
- Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688. [Google Scholar] [CrossRef]
- Liang, T.; Chen, T.; Qiu, J.; Gao, W.; Qiu, X.; Zhu, Y.; Wang, X.; Chen, Y.; Zhou, H.; Deng, Z.; et al. Inhibition of nuclear receptor RORα attenuates cartilage damage in osteoarthritis by modulating IL-6/STAT3 pathway. Cell Death Dis. 2021, 12, 886. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.E.; Block, J.A.; Malfait, A.M. Nerve growth factor blockade for the management of osteoarthritis pain: What can we learn from clinical trials and preclinical models? Curr. Opin. Rheumatol. 2017, 29, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Salottolo, K.; Cole, B.; Bar-Or, D. Intra-articular injection of the anti-inflammatory compound LMWF-5A in adults with severe osteoarthritis: A double-blind prospective randomized controlled multi-center safety and efficacy trial. Patient Saf. Surg. 2018, 12, 11. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, Q.; Jiao, L.; Huang, J.; Yi, J.; Chen, J.; Lai, J.; Ji, G.; Zheng, T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front. Endocrinol. 2022, 13, 1069057. [Google Scholar] [CrossRef]
- Mehrani, Y.; Junqani, R.R.; Morovati, S.; Mehrani, H.; Karimi, N.; Ghasemi, S. The Importance of Neutrophils in Osteoarthritis: Current Concepts and Therapeutic Perspectives. Immuno 2023, 3, 250–272. [Google Scholar] [CrossRef]
- Gerlag, D.M.; Raza, K.; Van Baarsen, L.G.; Brouwer, E.; Buckley, C.D.; Burmester, G.R.; Gabay, C.; Catrina, A.I.; Cope, A.P.; Cornelis, F.; et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: Report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann. Rheum. Dis. 2012, 71, 638–641. [Google Scholar] [CrossRef]
- Choi, W.-S.; Yang, J.-I.; Kim, W.; Kim, H.-E.; Kim, S.-K.; Won, Y.; Son, Y.-O.; Chun, C.-H.; Chun, J.-S. Critical role for arginase II in osteoarthritis pathogenesis. Ann. Rheum. Dis. 2019, 78, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Kao, C.-C.; Liang, H.-W.; Wu, H.-T. Validity of the Osteoarthritis Research Society International (OARSI) recommended performance-based tests of physical function in individuals with symptomatic Kellgren and Lawrence grade 0–2 knee osteoarthritis. BMC Musculoskelet. Disord. 2022, 23, 1040. [Google Scholar] [CrossRef]
- Silverwood, V.; Blagojevic-Bucknall, M.; Jinks, C.; Jordan, J.; Protheroe, J.; Jordan, K. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2015, 23, 507–515. [Google Scholar] [CrossRef]
- Kalogera, S.; Jansen, M.P.; Bay-Jensen, A.-C.; Frederiksen, P.; Karsdal, M.A.; Thudium, C.S.; Mastbergen, S.C. Relevance of Biomarkers in Serum vs. Synovial Fluid in Patients with Knee Osteoarthritis. Int. J. Mol. Sci. 2023, 24, 9483. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Ezquerro, F.; Marcon Alfieri, F.; Vilas Boas, L.; Tozetto-Mendoza, T.R.; Chen, J.; Ozcakar, L.; Arendt-Nielsen, L.; Rizzo Battistella, L. Serum levels of proinflammatory cytokines in painful knee osteoarthritis and sensitization. Int. J. Inflamm. 2015, 2015, 329792. [Google Scholar] [CrossRef]
- Churchman, S.M.; Geiler, J.; Parmar, R.; Horner, E.A.; Church, L.D.; Emery, P.; Buch, M.H.; McDermott, M.F.; Ponchel, F. Multiplexing immunoassays for cytokine detection in the serum of patients with rheumatoid arthritis: Lack of sensitivity and interference by rheumatoid factor. Clin. Exp. Rheumatol. 2012, 30, 534–542. [Google Scholar]
- BaHammam, A.S.; Almeneessier, A.S. Recent Evidence on the Impact of Ramadan Diurnal Intermittent Fasting, Mealtime, and Circadian Rhythm on Cardiometabolic Risk: A Review. Front. Nutr. 2020, 7, 28. [Google Scholar] [CrossRef]
- Dindorf, C.; Konradi, J.; Wolf, C.; Taetz, B.; Bleser, G.; Huthwelker, J.; Werthmann, F.; Bartaguiz, E.; Kniepert, J.; Drees, P.; et al. Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI). Sensors 2021, 21, 6323. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bai, H.; Ma, J.; Qin, H.; Zeng, Q.; Hu, F.; Jiang, T.; Mao, W.; Zhao, Y.; Chen, X.; et al. Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients. Front. Immunol. 2022, 13, 812514. [Google Scholar] [CrossRef]
- Shatz, I. Assumption-checking rather than (just) testing: The importance of visualization and effect size in statistical diagnostics. Behav. Res. Methods 2024, 56, 826–845. [Google Scholar] [CrossRef] [PubMed]
- Filion, G.J. The signed Kolmogorov-Smirnov test: Why it should not be used. GigaScience 2015, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Tsitsami, E.; Sarrigeorgiou, I.; Tsinti, M.; Rouka, E.C.; Zarogiannis, S.G.; Lymberi, P. Natural autoimmunity in oligoarticular juvenile idiopathic arthritis. Pediatr. Rheumatol. 2023, 21, 44. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Habibzadeh, F. Data Distribution: Normal or Abnormal? J. Korean Med. Sci. 2024, 39, e35. [Google Scholar] [CrossRef]
- Sherwani, R.A.K.; Shakeel, H.; Awan, W.B.; Faheem, M.; Aslam, M. Analysis of COVID-19 data using neutrosophic Kruskal Wallis H test. BMC Med. Res. Methodol. 2021, 21, 215. [Google Scholar] [CrossRef]
- Boonhoh, W.; Sontigun, N.; Fungwithaya, P.; Wongtawan, T. Hematological analysis of naturally infecting blood parasites in dogs. Vet.-World 2023, 16, 681–686. [Google Scholar] [CrossRef]
- Bayen, A.M.; Siauw, T. Chapter 14—Interpolation. In An Introduction to MATLAB® Programming and Numerical Methods for Engineers; Bayen, A.M., Siauw, T., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 211–223. [Google Scholar]
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef]
- Brase, C.H.; Brase, C.P. Understanding Basic Statistics, 8th ed.; Cengage Learning: Hampshire, UK, 2018. [Google Scholar]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar] [CrossRef] [PubMed]
- van der Ende, E.L.; E Bron, E.; Poos, J.M.; Jiskoot, L.C.; Panman, J.L.; Papma, J.M.; Meeter, L.H.; Dopper, E.G.P.; Wilke, C.; Synofzik, M.; et al. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2021, 145, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- West, R.M. Best practice in statistics: The use of log transformation. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2022, 59, 162–165. [Google Scholar] [CrossRef]
- Zou, G.; Smith, E.J.; Zou, L.; Qiu, S.-F.; Shu, D. A rank-based approach to design and analysis of pretest-posttest randomized trials, with application to COVID-19 ordinal scale data. Contemp. Clin. Trials 2023, 126, 107085. [Google Scholar] [CrossRef] [PubMed]
- Beasley, T.M.; Erickson, S.; Allison, D.B. Rank-based inverse normal transformations are increasingly used, but are they merited? Behav. Genet. 2009, 39, 580–595. [Google Scholar] [CrossRef]
- Stokes, M.E.; Davis, C.S.; Koch, G.G. Categorical Data Analysis Using SAS, 3rd ed.; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Jones, L.; Barnett, A.; Vagenas, D.; Abonazel, M.R. Common misconceptions held by health researchers when interpreting linear regression assumptions, a cross-sectional study. PLoS ONE 2025, 20, e0299617. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank Transformations as a Bridge between Parametric and Nonparametric Statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Kloke, J.; McKean, J. Nonparametric Statistical Methods Using R; Chapman and Hall/CRC: New York, NY, USA, 2014; p. 287. [Google Scholar]
- Pincus, R.; Barnett, V.; Lewis, T. Outliers in Statistical Data. 3rd edition. J. Wiley & Sons 1994, XVII. 582 pp., £49.95. Biom. J. 1995, 37, 256. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Van Aelst, S. High-Breakdown Robust Multivariate Methods. Stat. Sci. 2008, 23, 92–119. [Google Scholar] [CrossRef]
- Brunner, H.I.; Giannini, E.H. Chapter 7—Trial design, measurement, and analysis of clinical investigations. In Textbook of Pediatric Rheumatology, 6th ed.; Cassidy, J.T., Laxer, R.M., Petty, R.E., Lindsley, C.B., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2011; pp. 127–156. [Google Scholar]
- Antonogeorgos, G.; Panagiotakos, D.B.; Priftis, K.N.; Tzonou, A. Logistic Regression and Linear Discriminant Analyses in Evaluating Factors Associated with Asthma Prevalence among 10- to 12-Years-Old Children: Divergence and Similarity of the Two Statistical Methods. Int. J. Pediatr. 2009, 2009, 952042. [Google Scholar] [CrossRef]
- Hamadeh, L.; Imran, S.; Bencsik, M.; Sharpe, G.R.; Johnson, M.A.; Fairhurst, D.J. Machine Learning Analysis for Quantitative Discrimination of Dried Blood Droplets. Sci. Rep. 2020, 10, 3313. [Google Scholar] [CrossRef]
- Vavougios, G.D.; Doskas, T.; Konstantopoulos, K. An electroglottographical analysis-based discriminant function model differentiating multiple sclerosis patients from healthy controls. Neurol. Sci. 2018, 39, 847–850. [Google Scholar] [CrossRef]
- Karels, T.J.; Bryant, A.A.; Hik, D.S. Comparison of Discriminant Function and Classification Tree Analyses for Age Classification of Marmots. Oikos 2004, 105, 575–587. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, H. The application of sparse estimation of covariance matrix to quadratic discriminant analysis. BMC Bioinform. 2015, 16, 48. [Google Scholar] [CrossRef]
- Wu, R.; Hao, N. Quadratic discriminant analysis by projection. J. Multivar. Anal. 2022, 190, 104987. [Google Scholar] [CrossRef]
- Putri, N.; Parmikanti, K.; Gusriani, N. Robust Linear Discriminant Analysis with Modified One-Step M-Estimator Qn Scale for Classifying Financial Distress in Banks: Case Study. EKSAKTA Berk. Ilm. Bid. MIPA 2024, 25, 219–230. [Google Scholar]
- Austin, D.; King, R.E. The Biological Profile of Unidentified Human Remains in a Forensic Context. Acad. Forensic Pathol. 2016, 6, 370–390. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. Multivariate Analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 1947, 9, 176–190. [Google Scholar] [CrossRef]
- Kshirsagar, A.M. Distributions associated with the factors of Wilks’ Λ in discriminant analysis. J. Aust. Math. Soc. 1969, 10, 269–277. [Google Scholar] [CrossRef]
- Yassin, A.A. Modeling Financial Risk Using Discriminant Analysis: A Predictive Approach. Pak. J. Life Soc. Sci. (PJLSS) 2024, 22, 21715. [Google Scholar] [CrossRef]
- Wijaya, V.; Rachmat, N. Comparison of SVM, Random Forest, and Logistic Regression Performance n Student Mental Health Screening. JEECS (J. Electr. Eng. Comput. Sci.) 2024, 9, 173–184. [Google Scholar] [CrossRef]
- Pinheiro-Guedes, L.; Martinho, C.; Martins, M.R.O. Logistic Regression: Limitations in the Estimation of Measures of Association with Binary Health Outcomes. Acta Medica Port. 2024, 37, 697–705. [Google Scholar] [CrossRef]
- Qu, L.; Pei, Y. A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness. Processes 2024, 12, 1382. [Google Scholar] [CrossRef]
- Cui, L.; Li, H.; Hui, W.; Chen, S.; Yang, L.; Kang, Y.; Bo, Q.; Feng, J. A deep learning-based framework for lung cancer survival analysis with biomarker interpretation. BMC Bioinform. 2020, 21, 112. [Google Scholar] [CrossRef]
- Lin, D.Y.; Ying, Z. Cox Regression with Incomplete Covariate Measurements. J. Am. Stat. Assoc. 1993, 88, 1341. [Google Scholar] [CrossRef]
- Xu, C.; E Marchand, N.; Driban, J.B.; McAlindon, T.; Eaton, C.B.; Lu, B. Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Am. J. Clin. Nutr. 2020, 111, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, P.L.; Sipeki, N.; Kovacs, G.; Palyu, E.; Norman, G.L.; Shums, Z.; Golovics, P.A.; Lovasz, B.D.; Antal-Szalmas, P.; Papp, M. Risk Matrix for Prediction of Disease Progression in a Referral Cohort of Patients with Crohn’s Disease. J. Crohn’s Colitis 2015, 9, 891–898. [Google Scholar] [CrossRef]
- Kruk, M.; Przyłuski, J.; Kalińczuk, Ł.; Pręgowski, J.; Kaczmarska, E.; Petryka, J.; Kępka, C.; Bekta, P.; Chmielak, Z.; Demkow, M.; et al. Risk is not flat. Comprehensive approach to multidimensional risk management in ST-elevation myocardial infarction treated with primary angioplasty (ANIN STEMI Registry). Adv. Interv. Cardiol. 2013, 3, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Delaney, M.; Flegel, W.A.; Ness, P.; Ratcliffe, N.; Triulzi, D.J.; Yazer, M.H.; Ziman, A.; Dunbar, N.M. How do you… decide which platelet bacterial risk mitigation strategy to select for your hospital-based transfusion service? Transfusion 2020, 60, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, S.M.P.; van Balen, V.A.L.; Röselaers, Y.C.M.; Scheepers, H.C.J.; Spaanderman, M.E.A. The risk matrix approach: A helpful tool weighing probability and impact when deciding on preventive and diagnostic interventions. BMC Health Serv. Res. 2022, 22, 218. [Google Scholar] [CrossRef]
- Tauber, E.M. HIT: Heuristic Ideation Technique. A Systematic Procedure for New Product Search. J. Mark. 1972, 36, 58. [Google Scholar] [CrossRef]
- Shnaydman, V. Efficient Risk Mitigation Planning for a Clinical Trial. Ther. Innov. Regul. Sci. 2023, 57, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Zhou, E.; Wu, J.; Zhou, X.; Yin, Y. Systemic inflammatory biomarkers are novel predictors of all-cause and cardiovascular mortality in individuals with osteoarthritis: A prospective cohort study using data from the NHANES. BMC Public Health 2024, 24, 1586. [Google Scholar] [CrossRef] [PubMed]
- Brembilla, A.; Olland, A.; Puyraveau, M.; Massard, G.; Mauny, F.; Falcoz, P.-E. Use of the Cox regression analysis in thoracic surgical research. J. Thorac. Dis. 2018, 10, 3891–3896. [Google Scholar] [CrossRef]
- Tabachnick, B.G.F.; Linda, S. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2013. [Google Scholar]
- Chen, L.; Su, Y.; Li, H.; Yang, Z.; Li, J.J.; Xing, D. The role of dietary preferences in osteoarthritis: A Mendelian randomization study using genome-wide association analysis data from the UK Biobank. Front. Nutr. 2024, 11, 1373850. [Google Scholar] [CrossRef]
- Song, G.; Lu, Y. Association between the dietary inflammatory index and all-cause mortality in osteoarthritis. BMC Musculoskelet. Disord. 2024, 25, 407. [Google Scholar] [CrossRef]
- Krauss, I.; Roesel, I.; Martus, P.; Giurgiu, M.; Mueller, G. Effectiveness of an 11-week exercise intervention for patients with hip or knee osteoarthritis: Results of a quasi-experimental pragmatic trial. BMC Sports Sci. Med. Rehabil. 2024, 16, 24. [Google Scholar] [CrossRef]
- Cigdem, O.; Chen, S.; Zhang, C.; Cho, K.; Kijowski, R.; Deniz, C.M. Estimating time-to-total knee replacement on radiographs and MRI: A multimodal approach using self-supervised deep learning. Radiol. Adv. 2024, 1, umae030. [Google Scholar] [CrossRef]
- Kasthurirathne, S.N.; Dexter, G.; Grannis, S.J. Generative Adversarial Networks for Creating Synthetic Free-Text Medical Data: A Proposal for Collaborative Research and Re-use of Machine Learning Models. AMIA Summits Transl. Sci. Proc. 2021, 2021, 335–344. [Google Scholar] [PubMed]
- Prezja, F.; Paloneva, J.; Pölönen, I.; Niinimäki, E.; Äyrämö, S. DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Sci. Rep. 2022, 12, 18573. [Google Scholar] [CrossRef]
- Pfeifer, S.; Attaran, M.; Goldstein, J.; Lindheim, S.R.; Petrozza, J.C.; Rackow, B.W.; Siegelman, E.; Troiano, R.; Winter, T.; Zuckerman, A.; et al. ASRM müllerian anomalies classification 2021. Fertil. Steril. 2021, 116, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.J.; Gaitskell, K.; Turnbull, I.; Cairns, B.J.; Clarke, R. Characterisation, identification, clustering, and classification of disease. Sci. Rep. 2021, 11, 5405. [Google Scholar] [CrossRef]
- Abdulrahim, H.; Jiao, Q.; Swain, S.; Sehat, K.; Sarmanova, A.; Muir, K.; Zhang, W.; Doherty, M. Constitutional morphological features and risk of hip osteoarthritis: A case–control study using standard radiographs. Ann. Rheum. Dis. 2021, 80, 494–501. [Google Scholar] [CrossRef]
- Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, S.; Zhang, H.; Pang, L.; Lam, K.; Hui, C.; Zhang, S. Using the K-nearest neighbor algorithm for the classification of lymph node metastasis in gastric cancer. Comput. Math. Methods Med. 2012, 2012, 876545. [Google Scholar] [CrossRef] [PubMed]
- Long, N.P.; Park, S.; Anh, N.H.; Min, J.E.; Yoon, S.J.; Kim, H.M.; Nghi, T.D.; Lim, D.K.; Park, J.H.; Lim, J.; et al. Efficacy of Integrating a Novel 16-Gene Biomarker Panel and Intelligence Classifiers for Differential Diagnosis of Rheumatoid Arthritis and Osteoarthritis. J. Clin. Med. 2019, 8, 50. [Google Scholar] [CrossRef]
- Ye, X.; Wang, J.; Chen, Y.; Lv, Z.; He, S.; Mao, J.; Xu, J.; Shen, L. Automatic Screening and Identifying Myopic Maculopathy on Optical Coherence Tomography Images Using Deep Learning. Transl. Vis. Sci. Technol. 2021, 10, 10. [Google Scholar] [CrossRef]
- Sarmanova, A.; Fernandes, G.; Richardson, H.; Valdes, A.; Walsh, D.; Zhang, W.; Doherty, M. Contribution of central and peripheral risk factors to prevalence, incidence and progression of knee pain: A community-based cohort study. Osteoarthr. Cartil. 2018, 26, 1461–1473. [Google Scholar] [CrossRef]
- Oliveira, F.H.M.; Machado, A.R.P.; Andrade, A.O. On the Use of t-Distributed Stochastic Neighbor Embedding for Data Visualization and Classification of Individuals with Parkinson’s Disease. Comput. Math. Methods Med. 2018, 2018, 8019232. [Google Scholar] [CrossRef]
- Clim, A.; Zota, R.D.; TinicĂ, G. The Kullback-Leibler Divergence Used in Machine Learning Algorithms for Health Care Applications and Hypertension Prediction: A Literature Review. Procedia Comput. Sci. 2018, 141, 448–453. [Google Scholar] [CrossRef]
- Abramson, S.B.; Attur, M. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 2009, 11, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Alenazi, A.M.; Alhowimel, A.S.; Alshehri, M.M.; Alqahtani, B.A.; Alhwoaimel, N.A.; Segal, N.A.; Kluding, P.M. Osteoarthritis and Diabetes: Where Are We and Where Should We Go? Diagnostics 2023, 13, 1386. [Google Scholar] [CrossRef]
- Dığın, F.; Özkan, Z.K.; Kalaycı, E. Intensive Care Experiences of Postoperative Patients. J. Patient Exp. 2022, 9, 23743735221092489. [Google Scholar] [CrossRef]
- Ren, Z.; Lee, Y.J. Cross-Domain Self-Supervised Multi-task Feature Learning Using Synthetic Imagery. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 762–771. [Google Scholar]
- Anagnostou, P.; Barbas, P.; Vrahatis, A.G.; Tasoulis, S.K. Approximate kNN Classification for Biomedical Data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 3602–3607. [Google Scholar]
- Östlind, E.; Ekvall Hansson, E.; Eek, F.; Stigmar, K. Experiences of activity monitoring and perceptions of digital support among working individuals with hip and knee osteoarthritis—A focus group study. BMC Public Health 2022, 22, 1641. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Cheng, L.; Wang, Y.; Wu, R.; Ding, T.; Xue, H.; Gao, C.; Li, X.; Wang, C. New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 709178. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.K.; Rawle, R.A.; Adams, E.; Greenwood, M.C.; Bothner, B.; June, R.K. Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers. Biochem. Biophys. Res. Commun. 2018, 499, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jackson, S.A. Machine learning and complex biological data. Genome Biol. 2019, 20, 76. [Google Scholar] [CrossRef]
- Qazi, A.A.; Jørgensen, D.R.; Lillholm, M.; Loog, M.; Nielsen, M.; Dam, E.B. A framework for optimizing measurement weight maps to minimize the required sample size. Med. Image Anal. 2010, 14, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Serdar, C.C.; Cihan, M.; Yücel, D.; A Serdar, M. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Medica 2020, 31, 27–53. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, L.J.; Byrne, J.L.; Edwards, S.; O’Hara, R. Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review. Biologics 2025, 5, 27. https://doi.org/10.3390/biologics5030027
Coleman LJ, Byrne JL, Edwards S, O’Hara R. Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review. Biologics. 2025; 5(3):27. https://doi.org/10.3390/biologics5030027
Chicago/Turabian StyleColeman, Laura Jane, John L. Byrne, Stuart Edwards, and Rosemary O’Hara. 2025. "Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review" Biologics 5, no. 3: 27. https://doi.org/10.3390/biologics5030027
APA StyleColeman, L. J., Byrne, J. L., Edwards, S., & O’Hara, R. (2025). Advancing Early Detection of Osteoarthritis Through Biomarker Profiling and Predictive Modelling: A Review. Biologics, 5(3), 27. https://doi.org/10.3390/biologics5030027