Membranous Nephropathy: Advances in Diagnosis and Treatment, with an Eye on PLA2R1-Negative Forms
Abstract
1. Introduction
2. Diagnosis
2.1. New Antigens and Atypical Pathological Variants of MN
2.2. Liquid Biopsy, Complement, and Molecular Characterization of MN
3. Therapy
3.1. Bridging What Is Known to What Is New in PLA2R1-Positive MN
3.2. Highlights of Emerging Therapies and Clinical Trials in MN
3.2.1. B-Cell-Depleting Agents
3.2.2. B-Cell Modulating Agents
| Drug Class | Study Name and Molecule | Study Features | Selection Criteria | Control and Endpoints | Completion Estimated and Status |
|---|---|---|---|---|---|
| B-cell Depletion | REMIT trial (NCT06120673), obinutuzumab, anti-CD20 | phase 3 randomized multicenter, efficacy of obinutuzumab as initial treatment in newly diagnosed MN | MN regardless PLA2R1 positivity | CCS and CYC; CR, PR | withdrawn in 2025, financial limitations |
| MAJESTY trial (NCT04629248), obinutuzumab, anti-CD20 | phase 3 randomized multicenter, efficacy of obinutuzumab as initial treatment in newly diagnosed MN | MN PLA2R1-positive only | TAC; CR | 2025, active not recruiting. Preliminary results [103] | |
| ORION trial (NCT05050214), obinutuzumab, anti-CD20 | phase 2 pilot trial, efficacy and safety of obinutuzumab in patients either RTX resistant or RTX dependent | no mention | no control; CR, PR, ADR | 2026, active not recruiting | |
| NCT06470191 trial, obinutuzumab, anti-CD20 | phase 2/3 randomized multicenter study, efficacy and safety of obinutuzumab administered by subcutaneous injection | no mention | CYA; CR, PR | 2026, recruiting | |
| NCT07163611 trial, obinutuzumab, anti-CD20 | phase 2 pilot trial, single center, PLA2R1 reduction in MN patients | MN PLA2R1-positive only | no control; ADR, CR, PR, PLA2R1 reduction | 2028, not yet recruiting | |
| BLOSSOM trial (NCT06781944), obinutuzumab, anti-CD20 | phase 3, multicenter randomized trial, efficacy and safety in MN patients | MN regardless PLA2R1 positivity | CYC; efficacy, safety, CR, PR | 2028, recruiting | |
| NCT05398653 trial, MIL62, anti-CD20 | phase 1/2 multicenter randomized trial, efficacy and safety of MIL62 injection | no mention | CYA; CR, PR, ADR | completed in 2025. Preliminary results [104] | |
| NCT05862233 trial, MIL62, anti-CD20 | phase 3 clinical trial efficacy, safety, PK, PD and anti-drug antibodies of MIL62 | no mention | CYA; CR or PR | 2026, active not recruiting. Preliminary results [105] | |
| NCT06642909 trial, zuberitimab, anti-CD20 | phase 2 multicenter randomized study, efficacy, safety, pharmacokinetics, and immunogenicity of zuberitamab | likely MN regardless PLA2R1 positivity | CYA; CR, proteinuria reduction | 2027, active not recruiting | |
| PrisMN trial (NCT07096843), BUDOPRUTUG, anti-CD19 | phase 2, multicenter study, safety, efficacy of budoprutug (TNT119) in MN patients | PLA2R1-positive only | No control; ADR, CR, PR | 2027, recruiting | |
| B-cell Modulation | REBOOT trial (NCT03949855), belimumab, anti-BAFF | phase 2, randomized multicenter study, efficacy of belimumab combined with RTX | MN PLA2R1-positive only | RTX; CR or PR | 2029, recruiting. Primary results [106] |
| RUBY-3 trial (NCT05732402), povetacicept, CD40-CD40L and BAFF pathway modulator | phase 1b/2a, safety, PK, PD of different dose levels of povetacicept in Autoantibody-Associated Glomerular Diseases | MN PLA2R1 or THSD7A positive only | no control; safety, ADR | 2028, active not recruiting. Primary results [107] | |
| OLYMPUS trial (NCT07204275), povetacicept, CD40-CD40L and BAFF pathway modulator | phase 2/3 randomized multicenter trial, safety and efficacy in patients with MN | MN regardless PLA2R1 positivity | no control; safety, efficacy | 2027, recruiting | |
| TEST-T-PMN trial (NCT06614985), telitacicept, BAFF and APRIL modulator | phase 2, multicenter randomized clinical trial, safety and efficacy of telitacicept | likely MN regardless PLA2R1 positivity | CCS+CYC; CR | 2027, active not recruiting | |
| PIONEER trial (NCT06983028), atacicept, BAFF and APRIL modulator | phase 2, randomized clinical trial, safety, efficacy of atacicept in Multiple Autoimmune Glomerular Diseases | MN PLA2R1-positive only | no control; safety, efficacy | 2027, recruiting | |
| NCT05800873 trial, zanubrutinib, reversible BTK inhibitor (rBTKi) | phase 1b/2 study, safety, efficacy, PK of zanubrutinib | MN PLA2R1-positive only | no control; efficacy, safety, PK, PD | 2026, recruiting | |
| ALMOND-study trial (NCT05707377), zanubrutinib, rBTKi | phase 2/3 multicenter randomized study, safety, efficacy, PK of zanubrutinib | MN PLA2R1-positive only | TAC; proteinuria reduction | 2027, active not recruiting. Preliminary Analysis [108] | |
| NCT05136456 trial, edralbrutinib, irreversible BTK inhibitor | phase 2 randomized study, efficacy and safety of edralbrutinib | MN PLA2R1-positive only | no control; CR or PR | expected to be completed by 2024, unknown status | |
| PCs Directed | NEWPLACE trial (NCT04733040), felzartamab, anti-CD38 | phase 2 multicenter, randomized, efficacy, safety and PC/PD of felzartamab | MN PLA2R1-positive only | no control; PLA2R1 level reduction | completed in 2024, results not available yet |
| MONET trial (NCT04893096), felzartamab, anti-CD38 | phase 2, efficacy of felzartamab in RTX resistant patients | MN PLA2R1- or THSD7A-positive only | no control; CR, PR, proteinuria reduction | completed in 2025, results not available yet | |
| PROMINENT trial (NCT06962800), felzartamab, anti-CD38 | phase 3, multicenter, randomized, efficacy and safety of felzartamab in PMN | MN PLA2R1-positive or biopsy-proven MN | TAC; CR, PLA2R1 level reduction, PK | 2028, recruiting | |
| Complement Inhibitors | NCT03453619 trial, pegcetacopan, C3 inhibitor | phase 2 multicenter study, Safety and Biologic Activity of pegcetacopan in MN, LN, C3GP | PLA2R1-positive only | no control; proteinuria reduction | completed in 2023. Primary results [109] |
| ACTH | NCT05696613 trial, ACTH | phase 3 randomized multicenter study, Safety and Efficacy of ACTH to RTX | PLA2R1-positive only | RTX; proteinuria reduction, CR | 2026, recruiting |
| NCT00805753 trial, ACTH | phase 1, multicenter study, dose-finding of ACTH | no mention | no control; proteinuria reduction, ADR | completed in 2014, results not available yet | |
| CAAR-T, BiAATE | NCT06690359 trial, IM19 CAAR-T | phase 1 study, evaluation of IM19 CAR-T in IgAN patients and MN medium-high risk patients | Likely MN regardless PLA2R1 positivity | no control; safety, CR | 2026, not yet recruiting. |
| NCT06285279 trial, FKC288 CAAR-T targeting BCMA and CD19 | phase 1 single-center study, Safety and Efficacy of FKC288 in Participants With Autoimmune Kidney Diseases | PLA2R1-positive only | no control; safety and ADR | 2028, recruiting | |
| NCT06557265 trial, NKX019 CAAR-NK | phase 1/2, non-randomized, multicenter, safety and tolerability, NKX019 (CAR NK) in LN and MN | PLA2R1-positive only | Fludarabine+CYC; ADR, CR, PR | 2027, recruiting | |
| NCT06982729 trial, YK012, bispecific CD19-directed CD3 T cell engager | phase 1a and phase 2b, single-center study, safety, tolerability and efficacy of YK012 in MN | MN regardless PLA2R1 positivity | no control; safety, tolerability, efficacy | 2027, recruiting | |
| IFN Modulation | ALPHAGEM trial (NCT05941845), IFN-alfa | phase 2 study, efficacy of personalized IFN-alpha treatment for MN patients | PLA2R1-positive only | no control; PLA2R1 reduction | 2025, unknown status |
| nFc R Inhibitors | NCT05810961 trial, efgarfitimod, autoantibodies reduction | phase 2 multicenter, randomized study, efficacy and safety of efgarfitimod in Chinese MN patients | PLA2R1-positive only | placebo; proteinuria and PLA2R1 level reduction | terminated in 2025, sponsor decision |
| suPAR/uPAR Inhibitors | NCT06466135 trial, WAL0921, suPAR/uPAR inhibitor | phase 2 multicenter randomized study, safety, efficacy, PD, PK in glomerular disease | no mention | no control; safety, PK, PD, ADR | 2026, recruiting |
3.2.3. Plasma Cell-Directed Agents
3.2.4. Proteasome Inhibitors Agents
3.2.5. Complement Inhibitors
3.2.6. Chimeric Auto-Antibody Receptor T Cells (CAAR-T)/Natural Killer Cells (CAAR-NK) and Bispecific Antibodies (BiAbs)
3.2.7. Adrenocorticotropic Hormone (ACTH)-Based Therapies
3.2.8. Other Therapies
3.3. Bridging Recent Advances to Future Directions in MN, with a Focus on PLA2R1-Negative Forms
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, V.; Ganguli, A.; Saha, T.K.; Kohli, H.S.; Sud, K.; Gupta, K.L.; Joshi, K.; Sakhuja, V. A Randomized, Controlled Trial of Steroids and Cyclophosphamide in Adults with Nephrotic Syndrome Caused by Idiopathic Membranous Nephropathy. J. Am. Soc. Nephrol. 2007, 18, 1899. [Google Scholar] [CrossRef]
- Hogan, S.L.; Muller, K.E.; Jennette, J.C.; Falk, R.J. A Review of Therapeutic Studies of Idiopathic Membranous Glomerulopathy. Am. J. Kidney Dis. 1995, 25, 862–875. [Google Scholar] [CrossRef]
- Schieppati, A.; Mosconi, L.; Perna, A.; Mecca, G.; Bertani, T.; Garattini, S.; Remuzzi, G. Prognosis of Untreated Patients with Idiopathic Membranous Nephropathy. N. Engl. J. Med. 1993, 329, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Zucchelli, P.; Passerini, P.; Cesana, B.; Locatelli, F.; Pasquali, S.; Sasdelli, M.; Redaelli, B.; Grassi, C.; Pozzi, C. A 10-Year Follow-up of a Randomized Study with Methylprednisolone and Chlorambucil in Membranous Nephropathy. Kidney Int. 1995, 48, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Passerini, P.; Malvica, S.; Tripodi, F.; Cerutti, R.; Messa, P. Membranous Nephropathy (MN) Recurrence After Renal Transplantation. Front. Immunol. 2019, 10, 1326. [Google Scholar] [CrossRef]
- Hoxha, E.; Reinhard, L.; Stahl, R.A.K. Membranous Nephropathy: New Pathogenic Mechanisms and Their Clinical Implications. Nat. Rev. Nephrol. 2022, 18, 466–478. [Google Scholar] [CrossRef]
- Stanescu, H.C.; Arcos-Burgos, M.; Medlar, A.; Bockenhauer, D.; Kottgen, A.; Dragomirescu, L.; Voinescu, C.; Patel, N.; Pearce, K.; Hubank, M.; et al. Risk HLA-DQA1 and PLA(2)R1 Alleles in Idiopathic Membranous Nephropathy. N. Engl. J. Med. 2011, 364, 616–626. [Google Scholar] [CrossRef]
- Xie, J.; Liu, L.; Mladkova, N.; Li, Y.; Ren, H.; Wang, W.; Cui, Z.; Lin, L.; Hu, X.; Yu, X.; et al. The Genetic Architecture of Membranous Nephropathy and Its Potential to Improve Non-Invasive Diagnosis. Nat. Commun. 2020, 11, 1600. [Google Scholar] [CrossRef]
- Le, W.-B.; Shi, J.-S.; Fan, Y.; Gong, S.-W. HLA Alleles and Prognosis of PLA2R-Related Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2021, 16, 1221–1227. [Google Scholar] [CrossRef]
- Hoxha, E.; Wiech, T.; Stahl, P.R.; Zahner, G.; Tomas, N.M.; Meyer-Schwesinger, C.; Wenzel, U.; Janneck, M.; Steinmetz, O.M.; Panzer, U.; et al. A Mechanism for Cancer-Associated Membranous Nephropathy. N. Engl. J. Med. 2016, 374, 1995–1996. [Google Scholar] [CrossRef] [PubMed]
- Wiech, T.; Reinhard, L.; Wulf, S.; Giuffrida, A.E.; Longhitano, E.; Caruso, R.; Gröne, H.-J.; Stahl, R.A.K.; Zipfel, P.F.; Kikhney, J.; et al. Bacterial Infection Possibly Causing Autoimmunity: Tropheryma Whipplei and Membranous Nephropathy. Lancet 2022, 400, 1882–1883. [Google Scholar] [CrossRef]
- Cremoni, M.; Agbekodo, S.; Teisseyre, M.; Zorzi, K.; Brglez, V.; Benzaken, S.; Esnault, V.; Planchard, J.-H.; Seitz-Polski, B. Toxic Occupational Exposures and Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2022, 17, 1609–1619. [Google Scholar] [CrossRef]
- Kistler, A.D.; Salant, D.J. Complement Activation and Effector Pathways in Membranous Nephropathy. Kidney Int. 2024, 105, 473–483. [Google Scholar] [CrossRef]
- Liu, J.; Malhotra, D.; Ge, Y.; Gunning, W.; Dworkin, L.; Gong, R. THSD7A-Associated Membranous Nephropathy Involves Both Complement-Mediated and Autonomous Podocyte Injury. Front. Pharmacol. 2024, 15, 1430451. [Google Scholar] [CrossRef]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous Nephropathy. Nat. Rev. Dis. Primers 2021, 7, 69. [Google Scholar] [CrossRef]
- Qin, W.; Beck, L.H.; Zeng, C.; Chen, Z.; Li, S.; Zuo, K.; Salant, D.J.; Liu, Z. Anti-Phospholipase A2 Receptor Antibody in Membranous Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S. Membranous Nephropathy: A Single Disease or a Pattern of Injury Resulting from Different Diseases. Clin. Kidney J. 2021, 14, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Caravaca-Fontán, F.; Yandian, F.; Fervenza, F.C. Updated Diagnostic and Therapeutic Management for Membranous Nephropathy. Curr. Opin. Nephrol. Hypertens. 2025, 34, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Beck, L.H.; Glassock, R.J.; Haas, M.; De Vriese, A.S.; Caza, T.N.; Hoxha, E.; Lambeau, G.; Tomas, N.M.; Madden, B.; et al. Mayo Clinic Consensus Report on Membranous Nephropathy: Proposal for a Novel Classification. Kidney Int. 2023, 104, 1092–1102. [Google Scholar] [CrossRef]
- Beck, L.H.; Bonegio, R.G.B.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Bobart, S.A.; De Vriese, A.S.; Pawar, A.S.; Zand, L.; Sethi, S.; Giesen, C.; Lieske, J.C.; Fervenza, F.C. Noninvasive Diagnosis of Primary Membranous Nephropathy Using Phospholipase A2 Receptor Antibodies. Kidney Int. 2019, 95, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Couser, W.G. Primary Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 983–997. [Google Scholar] [CrossRef]
- Sethi, S.; Fervenza, F.C. Membranous Nephropathy-Diagnosis and Identification of Target Antigens. Nephrol. Dial. Transplant. 2024, 39, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, Y.; Zand, L.; Sethi, S.; Fervenza, F.C. Membranous Nephropathy Treatment Standard. Nephrol. Dial. Transplant. 2024, 39, 403–413. [Google Scholar] [CrossRef]
- Ragy, O.; Bate, S.; Bukhari, S.; Hiremath, M.; Samani, S.; Khwaja, A.; Rao, A.; Kanigicherla, D.A.K. PLA2R Antibody Does Not Outperform Conventional Clinical Markers in Predicting Outcomes in Membranous Nephropathy. Kidney Int. Rep. 2023, 8, 1605–1615. [Google Scholar] [CrossRef]
- Andeen, N.K.; Kung, V.L.; Avasare, R.S.; Barbour, S.; Griffith, M.; Bissonnette, M.L.Z.; Roufosse, C. Questions and Caveats in Antigen-Defined Membranous Nephropathy. J. Am. Soc. Nephrol. 2025, 36, 1639–1651. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; Vivarelli, M.; Charlesworth, M.C.; Ravindran, A.; Gross, L.; Ulinski, T.; Buob, D.; Tran, C.L.; et al. Semaphorin 3B-Associated Membranous Nephropathy Is a Distinct Type of Disease Predominantly Present in Pediatric Patients. Kidney Int. 2020, 98, 1253–1264. [Google Scholar] [CrossRef]
- Sharma, S.G.; Larsen, C.P. Tissue Staining for THSD7A in Glomeruli Correlates with Serum Antibodies in Primary Membranous Nephropathy: A Clinicopathological Study. Mod. Pathol. 2018, 31, 616–622. [Google Scholar] [CrossRef]
- Romagnani, P.; Kitching, A.R.; Leung, N.; Anders, H.-J. The Five Types of Glomerulonephritis Classified by Pathogenesis, Activity and Chronicity (GN-AC). Nephrol. Dial. Transplant. 2023, 38, ii3–ii10. [Google Scholar] [CrossRef] [PubMed]
- Avasare, R.; Andeen, N.; Beck, L. Novel Antigens and Clinical Updates in Membranous Nephropathy. Annu. Rev. Med. 2024, 75, 219–332. [Google Scholar] [CrossRef]
- Sethi, S.; Theis, J.D.; Palma, L.M.P.; Madden, B. From Patterns to Proteins: Mass Spectrometry Comes of Age in Glomerular Disease. J. Am. Soc. Nephrol. 2024, 35, 117–128. [Google Scholar] [CrossRef]
- Sethi, S. New “Antigens” in Membranous Nephropathy. J. Am. Soc. Nephrol. 2021, 32, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Storey, A.J.; Hassen, S.I.; Herzog, C.; Edmondson, R.D.; Arthur, J.M.; Kenan, D.J.; Larsen, C.P. Discovery of Seven Novel Putative Antigens in Membranous Nephropathy and Membranous Lupus Nephritis Identified by Mass Spectrometry. Kidney Int. 2023, 103, 593–606. [Google Scholar] [CrossRef]
- Hengel, F.E.; Dehde, S.; Lassé, M.; Zahner, G.; Seifert, L.; Schnarre, A.; Kretz, O.; Demir, F.; Pinnschmidt, H.O.; Grahammer, F.; et al. Autoantibodies Targeting Nephrin in Podocytopathies. N. Engl. J. Med. 2024, 391, 422–433. [Google Scholar] [CrossRef]
- Giannini, G.; Arend, L.J. The Prevalence of Mesangial Electron-Dense Deposits in PLA2R-Positive Membranous Nephropathy. Nephron 2022, 146, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Santoriello, D.; Debiec, H.; Canetta, P.A.; Bomback, A.S.; Stokes, M.B.; Batal, I.; Ronco, P.; D’Agati, V.D.; Markowitz, G.S. The Clinicopathologic Spectrum of Segmental Membranous Glomerulopathy. Kidney Int. 2021, 99, 247–255. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; Charlesworth, M.C.; Morelle, J.; Gross, L.; Ravindran, A.; Buob, D.; Jadoul, M.; Fervenza, F.C.; et al. Neural Epidermal Growth Factor-like 1 Protein (NELL-1) Associated Membranous Nephropathy. Kidney Int. 2020, 97, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Choung, H.Y.G.; Goldman, B. Segmental Membranous Nephropathy. Clin. Exp. Nephrol. 2021, 25, 700–707. [Google Scholar] [CrossRef]
- Obana, M.; Nakanishi, K.; Sako, M.; Yata, N.; Nozu, K.; Tanaka, R.; Iijima, K.; Yoshikawa, N. Segmental Membranous Glomerulonephritis in Children: Comparison with Global Membranous Glomerulonephritis. Clin. J. Am. Soc. Nephrol. 2006, 1, 723–729. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Zhao, Z. Clinicopathological Features and Predictors of Anti-GBM Disease Combined with Membranous Nephropathy. Clin. Kidney J. 2025, 18, sfaf014. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cai, M.; Jiang, Z.; Dong, B.; Yan, Y.; Wang, Y.; Zuo, L. Association of Serum Mannose-Binding Lectin, Anti-Phospholipase A2 Receptor Antibody and Renal Outcomes in Idiopathic Membranous Nephropathy and Atypical Membranous Nephropathy: A Single Center Retrospective Cohort Study. Ren. Fail. 2022, 44, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, S.; Hu, R.; Li, C.; Chen, G.; Shi, X.; Liu, Y.; Zheng, K.; Li, H.; Wen, Y.; et al. The Safety and Efficacy of Rituximab-Based Regimen in Atypical Membranous Nephropathy: A Single Center Retrospective Cohort Study. Int. J. Gen. Med. 2023, 16, 1983–1993. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Xu, A.; Wei, L.; Pei, M.; Shen, T.; Xian, X.; Yang, K.; Fei, L.; Pan, Y.; et al. Future Embracing: Exosomes Driving a Revolutionary Approach to the Diagnosis and Treatment of Idiopathic Membranous Nephropathy. J. Nanobiotechnol. 2024, 22, 472. [Google Scholar] [CrossRef]
- Tsuji, K.; Kitamura, S.; Wada, J. MicroRNAs as Biomarkers for Nephrotic Syndrome. Int. J. Mol. Sci. 2020, 22, 88. [Google Scholar] [CrossRef]
- Masaoutis, C.; Al Besher, S.; Koutroulis, I.; Theocharis, S. Exosomes in Nephropathies: A Rich Source of Novel Biomarkers. Dis. Markers 2020, 2020, 8897833. [Google Scholar] [CrossRef]
- Feng, Y.; Lv, L.-L.; Wu, W.-J.; Li, Z.-L.; Chen, J.; Ni, H.-F.; Zhou, L.-T.; Tang, T.-T.; Wang, F.-M.; Wang, B.; et al. Urinary Exosomes and Exosomal CCL2 mRNA as Biomarkers of Active Histologic Injury in IgA Nephropathy. Am. J. Pathol. 2018, 188, 2542–2552. [Google Scholar] [CrossRef]
- Wu, Q.; Poulsen, S.B.; Murali, S.K.; Grimm, P.R.; Su, X.-T.; Delpire, E.; Welling, P.A.; Ellison, D.H.; Fenton, R.A. Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney. J. Am. Soc. Nephrol. 2021, 32, 2195–2209. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, K.; Ueda, K.; Sekiguchi, M.; Nakano, E.; Nishimura, T.; Kajiho, Y.; Kanda, S.; Miura, K.; Hattori, M.; Hashimoto, J.; et al. Urinary Extracellular Vesicles Signature for Diagnosis of Kidney Disease. iScience 2022, 25, 105416. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, J. siRNA against TSG101 Reduces Proliferation and Induces G0/G1 Arrest in Renal Cell Carcinoma—Involvement of c-Myc, Cyclin E1, and CDK2. Cell Mol. Biol. Lett. 2019, 24, 7. [Google Scholar] [CrossRef]
- Ayoub, I.; Shapiro, J.P.; Song, H.; Zhang, X.L.; Parikh, S.; Almaani, S.; Madhavan, S.; Brodsky, S.V.; Satoskar, A.; Bott, C.; et al. Establishing a Case for Anti-Complement Therapy in Membranous Nephropathy. Kidney Int. Rep. 2021, 6, 484–492. [Google Scholar] [CrossRef]
- Morita, Y.; Ikeguchi, H.; Nakamura, J.; Hotta, N.; Yuzawa, Y.; Matsuo, S. Complement Activation Products in the Urine from Proteinuric Patients. J. Am. Soc. Nephrol. 2000, 11, 700–707. [Google Scholar] [CrossRef]
- Zhang, M.-F.; Huang, J.; Zhang, Y.-M.; Qu, Z.; Wang, X.; Wang, F.; Meng, L.-Q.; Cheng, X.-Y.; Cui, Z.; Liu, G.; et al. Complement Activation Products in the Circulation and Urine of Primary Membranous Nephropathy. BMC Nephrol. 2019, 20, 313. [Google Scholar] [CrossRef]
- Branten, A.J.; Kock-Jansen, M.; Klasen, I.S.; Wetzels, J.F. Urinary Excretion of Complement C3d in Patients with Renal Diseases. Eur. J. Clin. Investig. 2003, 33, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Cattran, D.C.; Wald, R.; Brenchley, P.E.C.; Coupes, B.; North American Nephrotic Syndrome Group; Genes, Gender and Glomerulonephritis Group. Clinical Correlates of Serial Urinary Membrane Attack Complex Estimates in Patients with Idiopathic Membranous Nephropathy. Clin. Nephrol. 2003, 60, 7–12. [Google Scholar] [PubMed]
- Montinaro, V.; Lopez, A.; Monno, R.; Cappiello, V.; Manno, C.; Gesualdo, L.; Schena, F.P. Renal C3 Synthesis in Idiopathic Membranous Nephropathy: Correlation to Urinary C5b-9 Excretion. Kidney Int. 2000, 57, 137–146. [Google Scholar] [CrossRef]
- Gao, S.; Cui, Z.; Zhao, M.-H. Complement C3a and C3a Receptor Activation Mediates Podocyte Injuries in the Mechanism of Primary Membranous Nephropathy. J. Am. Soc. Nephrol. 2022, 33, 1742–1756. [Google Scholar] [CrossRef]
- Schulze, M.; Donadio, J.V.; Pruchno, C.J.; Baker, P.J.; Johnson, R.J.; Stahl, R.A.; Watkins, S.; Martin, D.C.; Wurzner, R.; Gotze, O. Elevated Urinary Excretion of the C5b-9 Complex in Membranous Nephropathy. Kidney Int. 1991, 40, 533–538. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Cui, Z.; Zhang, M.-F.; Wang, J.; Zhang, Y.-M.; Qu, Z.; Wang, X.; Huang, J.; Wang, F.; Meng, L.-Q.; et al. Clinical Implications of Pathological Features of Primary Membranous Nephropathy. BMC Nephrol. 2018, 19, 215. [Google Scholar] [CrossRef]
- Koski, C.L.; Ramm, L.E.; Hammer, C.H.; Mayer, M.M.; Shin, M.L. Cytolysis of Nucleated Cells by Complement: Cell Death Displays Multi-Hit Characteristics. Proc. Natl. Acad. Sci. USA 1983, 80, 3816–3820. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.S.; Morgan, B.P. Beyond Lysis: How Complement Influences Cell Fate. Clin. Sci. 2003, 104, 455–466. [Google Scholar] [CrossRef]
- Meena, P.; Ramachandran, R.; Bose, B.; Hissaria, P.; Das, P. Changing Treatment Paradigms for Membranous Nephropathies. Nephrol. Dial. Transplant. 2024, 39, 1938–1941. [Google Scholar] [CrossRef]
- Nangaku, M.; Shankland, S.J.; Couser, W.G. Cellular Response to Injury in Membranous Nephropathy. J. Am. Soc. Nephrol. 2005, 16, 1195–1204. [Google Scholar] [CrossRef]
- Teisseyre, M.; Beyze, A.; Perrochia, H.; Szwarc, I.; Bourgeois, A.; Champion, C.; Chenine, L.; Serre, J.-E.; Broner, J.; Aglae, C.; et al. C5b-9 Glomerular Deposits Are Associated with Poor Renal Survival in Membranous Nephropathy. Kidney Int. Rep. 2023, 8, 103–114. [Google Scholar] [CrossRef]
- Hayashi, N.; Okada, K.; Matsui, Y.; Fujimoto, K.; Adachi, H.; Yamaya, H.; Matsushita, M.; Yokoyama, H. Glomerular Mannose-Binding Lectin Deposition in Intrinsic Antigen-Related Membranous Nephropathy. Nephrol. Dial. Transplant. 2018, 33, 832–840. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Wu, M.-J.; Chen, C.-H. Low Serum C3 Level, High Neutrophil-Lymphocyte-Ratio, and High Platelet-Lymphocyte-Ratio All Predicted Poor Long-Term Renal Survivals in Biopsy-Confirmed Idiopathic Membranous Nephropathy. Sci. Rep. 2019, 9, 6209. [Google Scholar] [CrossRef]
- Custódio, F.B.; da Silva, C.A.; Helmo, F.R.; Machado, J.R.; Reis, M.A.D. Complement System and C4d Expression in Cases of Membranous Nephropathy. J. Bras. Nefrol. 2017, 39, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-F.; Cui, Z.; Zhang, Y.-M.; Qu, Z.; Wang, X.; Wang, F.; Meng, L.-Q.; Cheng, X.-Y.; Liu, G.; Zhao, M.-H. Clinical and Prognostic Significance of Glomerular C1q Deposits in Primary MN. Clin. Chim. Acta 2018, 485, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Hipp, C.G. Immunohistopathologic Evaluation of C1q in 800 Renal Biopsy Specimens. Am. J. Clin. Pathol. 1985, 83, 415–420. [Google Scholar] [CrossRef]
- Sealfon, R.; Mariani, L.; Avila-Casado, C.; Nair, V.; Menon, R.; Funk, J.; Wong, A.; Lerner, G.; Hayashi, N.; Troyanskaya, O.; et al. Molecular Characterization of Membranous Nephropathy. J. Am. Soc. Nephrol. 2022, 33, 1208–1221. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.R.; Friedman, D.J. The Genetic Architecture of Kidney Disease. Clin. J. Am. Soc. Nephrol. 2020, 15, 268–275. [Google Scholar] [CrossRef]
- Rojas-Rivera, J.E.; Ortiz, A.; Fervenza, F.C. Novel Treatments Paradigms: Membranous Nephropathy. Kidney Int. Rep. 2023, 8, 419–431. [Google Scholar] [CrossRef]
- Wang, T.; Xu, J.; Sun, Y.; Liu, L.; Li, Y.; Cai, X.; Chen, M.; Fang, Y. Efficacy of Sulodexide in Treating Idiopathic Membranous Nephropathy among Chinese Patients: A Meta-Analysis. Am. J. Transl. Res. 2024, 16, 2756–2764. [Google Scholar] [CrossRef]
- Chertow, G.M.; Heerspink, H.L.; Mark, P.B.; Dwyer, J.P.; Nowicki, M.; Wheeler, D.C.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; Langkilde, A.M.; et al. Effects of Dapagliflozin in Patients with Membranous Nephropathy. Glomerular Dis. 2024, 4, 137–145. [Google Scholar] [CrossRef] [PubMed]
- McCune, W.J.; Golbus, J.; Zeldes, W.; Bohlke, P.; Dunne, R.; Fox, D.A. Clinical and Immunologic Effects of Monthly Administration of Intravenous Cyclophosphamide in Severe Systemic Lupus Erythematosus. N. Engl. J. Med. 1988, 318, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group. Members Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Cragg, M.S.; Walshe, C.A.; Ivanov, A.O.; Glennie, M.J. The Biology of CD20 and Its Potential as a Target for mAb Therapy. Curr. Dir. Autoimmun. 2005, 8, 140–174. [Google Scholar] [CrossRef] [PubMed]
- Fervenza, F.C.; Appel, G.B.; Barbour, S.J.; Rovin, B.H.; Lafayette, R.A.; Aslam, N.; Jefferson, J.A.; Gipson, P.E.; Rizk, D.V.; Sedor, J.R.; et al. Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. N. Engl. J. Med. 2019, 381, 36–46. [Google Scholar] [CrossRef]
- Ponticelli, C.; Podestà, M.A. Calcineurin Inhibitors in Lupus Nephritis. J. Nephrol. 2021, 34, 399–402. [Google Scholar] [CrossRef]
- Boyer-Suavet, S.; Andreani, M.; Lateb, M.; Savenkoff, B.; Brglez, V.; Benzaken, S.; Bernard, G.; Nachman, P.H.; Esnault, V.; Seitz-Polski, B. Neutralizing Anti-Rituximab Antibodies and Relapse in Membranous Nephropathy Treated with Rituximab. Front. Immunol. 2019, 10, 3069. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Cravedi, P.; Chianca, A.; Perna, A.; Ruggiero, B.; Gaspari, F.; Rambaldi, A.; Marasà, M.; Remuzzi, G. Rituximab in Idiopathic Membranous Nephropathy. J. Am. Soc. Nephrol. 2012, 23, 1416–1425. [Google Scholar] [CrossRef]
- Podestà, M.A.; Trillini, M.; Portalupi, V.; Gennarini, A.; Tomatis, F.; Villa, A.; Perna, A.; Rubis, N.; Remuzzi, G.; Ruggenenti, P. Ofatumumab in Rituximab-Resistant and Rituximab-Intolerant Patients with Primary Membranous Nephropathy: A Case Series. Am. J. Kidney Dis. 2024, 83, 340–349.e1. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Yandian, F.; Fervenza, F.C. Future Landscape for the Management of Membranous Nephropathy. Clin. Kidney J. 2023, 16, 1228–1238. [Google Scholar] [CrossRef]
- Teisseyre, M.; Boyer-Suavet, S.; Crémoni, M.; Brglez, V.; Esnault, V.; Seitz-Polski, B. Analysis and Management of Rituximab Resistance in PLA2R1-Associated Membranous Nephropathy. Kidney Int. Rep. 2021, 6, 1183–1188. [Google Scholar] [CrossRef]
- Zonozi, R.; Laliberte, K.; Huizenga, N.R.; Rosenthal, J.K.; Jeyabalan, A.; Collins, A.B.; Cortazar, F.B.; Niles, J.L. Combination of Rituximab, Low-Dose Cyclophosphamide, and Prednisone for Primary Membranous Nephropathy: A Case Series with Extended Follow Up. Am. J. Kidney Dis. 2021, 78, 793–803. [Google Scholar] [CrossRef]
- Zand, L.; Fervenza, F.C. Anti-CD20 Should Be the First-Line Treatment in High-Risk Membranous Nephropathy. Clin. Kidney J. 2023, 16, 1420–1425. [Google Scholar] [CrossRef]
- Mössner, E.; Brünker, P.; Moser, S.; Püntener, U.; Schmidt, C.; Herter, S.; Grau, R.; Gerdes, C.; Nopora, A.; van Puijenbroek, E.; et al. Increasing the Efficacy of CD20 Antibody Therapy through the Engineering of a New Type II Anti-CD20 Antibody with Enhanced Direct and Immune Effector Cell-Mediated B-Cell Cytotoxicity. Blood 2010, 115, 4393–4402. [Google Scholar] [CrossRef]
- Reddy, V.; Dahal, L.N.; Cragg, M.S.; Leandro, M. Optimising B-Cell Depletion in Autoimmune Disease: Is Obinutuzumab the Answer? Drug Discov. Today 2016, 21, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.; Klein, C.; Isenberg, D.A.; Glennie, M.J.; Cambridge, G.; Cragg, M.S.; Leandro, M.J. Obinutuzumab Induces Superior B-Cell Cytotoxicity to Rituximab in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patient Samples. Rheumatology 2017, 56, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Klomjit, N.; Fervenza, F.C.; Zand, L. Successful Treatment of Patients with Refractory PLA2R-Associated Membranous Nephropathy With Obinutuzumab: A Report of 3 Cases. Am. J. Kidney Dis. 2020, 76, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Kumar, S.; Lim, K.; Jordan, S.C. Obinutuzumab Is Effective for the Treatment of Refractory Membranous Nephropathy. Kidney Int. Rep. 2020, 5, 1515–1518. [Google Scholar] [CrossRef]
- Naik, S.; Shukla, S.; Av, N.; Kumar, V.; Sekar, A.; Nada, R.; Rathi, M.; Kohli, H.S.; Ramachandran, R. Obinutuzumab in Refractory Phospholipase A2 Receptor-Associated Membranous Nephropathy with Severe CKD. Kidney Int. Rep. 2023, 8, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Wang, J.; Zhou, P.; Xu, R.; Chen, X. Obinutuzumab in Untreated Primary Membranous Nephropathy: An Observational Case Series. Nephrology 2024, 29, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wu, B.; Tie, X.; Guo, X.; Feng, R.; Qiao, X.; Wang, L. Obinutuzumab as Initial or Second-Line Therapy in Patients with Primary Membranous Nephropathy. Kidney Int. Rep. 2024, 9, 2386–2398. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, M.; Xu, J.; Gao, C.; Yu, X.; Li, X.; Ren, H.; Wang, W.; Xie, J. Comparison of Obinutuzumab and Rituximab for Treating Primary Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2024, 19, 1594–1602. [Google Scholar] [CrossRef]
- Podestà, M.A.; Gennarini, A.; Portalupi, V.; Rota, S.; Alessio, M.G.; Remuzzi, G.; Ruggenenti, P. Accelerating the Depletion of Circulating Anti-Phospholipase A2 Receptor Antibodies in Patients with Severe Membranous Nephropathy: Preliminary Findings with Double Filtration Plasmapheresis and Ofatumumab. Nephron 2020, 144, 30–35. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Zhou, H.; Cen, H.; Zhang, M.; Lv, F.; Zhang, Q.; Sun, X.; Liu, L.; Huang, Y.; et al. Comparison of Zuberitamab plus CHOP versus Rituximab plus CHOP for the Treatment of Drug-Naïve Patients Diagnosed with CD20-Positive Diffuse Large B-Cell Lymphoma: A Phase 3 Trial. J. Immunother. Cancer 2024, 12, e008895. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.; Willcocks, L.C.; Jones, R.B.; Tarzi, R.M.; Henderson, R.B.; Cai, G.; Gisbert, S.I.; Belson, A.S.; Savage, C.O. Effect of Belimumab on Proteinuria and Anti-Phospholipase A2 Receptor Autoantibody in Primary Membranous Nephropathy. Nephrol. Dial. Transplant. 2020, 35, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, F.; Zhang, X. Single-dose Telitacicept Therapy for Refractory Idiopathic Membranous Nephropathy: A Case Series. Clin. Case Rep. 2024, 12, e9553. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, H.; Wang, D.; Wang, Y. Case Report: Successful Treatment of Refractory Membranous Nephropathy with Telitacicept. Front. Immunol. 2023, 14, 1268929. [Google Scholar] [CrossRef]
- Wang, J.-L.; Sun, Y.-L.; Kang, Z.; Zhang, S.-K.; Yu, C.-X.; Zhang, W.; Xie, H.; Lin, H.-L. Anti-Phospholipase A2 Receptor-Associated Membranous Nephropathy with Human Immunodeficiency Virus Infection Treated with Telitacicept: A Case Report. World J. Clin. Cases 2023, 11, 5309–5315. [Google Scholar] [CrossRef]
- Khan, W.N. Regulation of B Lymphocyte Development and Activation by Bruton’s Tyrosine Kinase. Immunol. Res. 2001, 23, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Fervenza, F.C.; Gesualdo, L.; Mastroianni-Kirsztajn, G.; Hou, F.F.; Appel, G.B.; Prot, S.; Berisha, E.; Khatri, L.; Parsons, T.; Spinks, E.; et al. MAJESTY: A Phase 3, Randomized, Open-Label, Active Comparator-Controlled, Multicenter Study Evaluating the Efficacy and Safety of Obinutuzumab in Patients with Primary Membranous Nephropathy: TH-OR92. J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Type II Glycoengineered Anti-CD20 Antibody MIL62 or Cyclosporine in Chinese Primary Membranous Nephropathy: A Multicenter, Randomized, Open-Label Phase 1b/2 Trial. Available online: https://www.asn-online.org/education/kidneyweek/2024/program-abstract.aspx?controlId=4116623 (accessed on 10 December 2025).
- Cui, Z.; Wei, M.; Li, P.; Wang, R.; Li, H.; Zhang, H.; Lin, H.L.; Lan, C.X.; Luo, P.; Zhou, H.; et al. Efficacy and Safety of MIL62, a Glycoengineered Type II Anti-CD20 Antibody, in Primary Membranous Nephropathy: A Phase 3, Randomized, Controlled Trial: SA-OR085. J. Am. Soc. Nephrol. 2025, 36. [Google Scholar] [CrossRef]
- Nachman, P.H.; Stelzig, L.; Sherman, M.A.; Barry, W.T.; Chung, S. Belimumab and Rituximab for the Treatment of Primary Membranous Nephropathy: Initial REBOOT Results: TH-PO586. J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Madan, A.; Yalavarthy, R.; Kim, D.K.; Moon, J.Y.; Park, I.; Mandayam, S.A.; Cortazar, F.B.; Kim, S.G.; Davies, R.H.; Enstrom, A.M.; et al. Results from Longer Follow-Up with Povetacicept, an Enhanced Dual BAFF/APRIL Antagonist, in IgA Nephropathy (RUBY-3 Study). J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Barbour, S.; Chen, Y.; Yao, Z.; Song, J.; Li, G.; Zhao, M. Zanubrutinib (zanu) in Anti-Phospholipase A2 Receptor (PLA2R)-Associated Primary Membranous Nephropathy (PMN): Preliminary Results of a Phase 2/3, Multicenter, Randomized, Open-Label Study: SA-OR051. J. Am. Soc. Nephrol. 2025, 36. [Google Scholar] [CrossRef]
- Dixon, B.P.; Greenbaum, L.A.; Huang, L.; Rajan, S.; Ke, C.; Zhang, Y.; Li, L. Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients with C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases. Kidney Int. Rep. 2023, 8, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Ciofini, S.; Simoncelli, M.; Santoni, A.; Pacelli, P.; Raspadori, D.; Bocchia, M. Anti CD38 Monoclonal Antibodies for Multiple Myeloma Treatment. Hum. Vaccin. Immunother. 2022, 18, 2052658. [Google Scholar] [CrossRef]
- Vink, C.H.; van Cranenbroek, B.; van der Heijden, J.W.; Koenen, H.P.J.M.; Wetzels, J.F.M. Daratumumab for Multidrug-Resistant Phospholipase-A2 Receptor-Related Membranous Nephropathy. Kidney Int. 2022, 101, 646–647. [Google Scholar] [CrossRef]
- Stehlé, T.; Grimbert, P.; Remy, P.; Moktefi, A.; Audard, V.; El Karoui, K. Anti-CD38 Therapy for PLA2R-Positive Membranous Nephropathy Resistant to Conventional Immunosuppression. Kidney Int. 2022, 101, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Geara, A.S. Daratumumab for Anti-CD20-Refractory Membranous Nephropathy: TH-PO677. J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Rovin, B.H.; Ronco, P.M.; Wetzels, J.F.M.; Adler, S.G.; Ayoub, I.; Zaoui, P.; Han, S.H.; Dudani, J.S.; Gilbert, H.N.; Patel, U.D.; et al. Phase 1b/2a Study Assessing the Safety and Efficacy of Felzartamab in Anti-Phospholipase A2 Receptor Autoantibody-Positive Primary Membranous Nephropathy. Kidney Int. Rep. 2024, 9, 2635–2647. [Google Scholar] [CrossRef]
- Salhi, S.; Ribes, D.; Colombat, M.; Fortenfant, F.; Faguer, S. Bortezomib plus Dexamethasone for Rituximab-Resistant PLA2R+ Membranous Nephropathy. Kidney Int. 2021, 100, 708–709. [Google Scholar] [CrossRef]
- Geara, A.S.; Bhoj, V.; Hogan, J.J. Bortezomib Treatment for Refractory PLA2R-Positive Membranous Nephropathy. Glomerular Dis. 2021, 1, 40–43. [Google Scholar] [CrossRef]
- Salhi, S.; Ribes, D.; Fortenfant, F.; Faguer, S. Plasma Cell-Directed Therapy for Rituximab-Refractory PLA2R+ Membranous Nephropathy. Nephrol. Dial. Transplant. 2023, 38, 2851–2853. [Google Scholar] [CrossRef] [PubMed]
- Hartono, C.; Chung, M.; Kuo, S.F.; Seshan, S.V.; Muthukumar, T. Bortezomib Therapy for Nephrotic Syndrome Due to Idiopathic Membranous Nephropathy. J. Nephrol. 2014, 27, 103–106. [Google Scholar] [CrossRef]
- Hillmen, P.; Szer, J.; Weitz, I.; Röth, A.; Höchsmann, B.; Panse, J.; Usuki, K.; Griffin, M.; Kiladjian, J.-J.; de Castro, C.; et al. Pegcetacoplan versus Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2021, 384, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Gerber, G.F.; Brodsky, R.A. Pegcetacoplan for Paroxysmal Nocturnal Hemoglobinuria. Blood 2022, 139, 3361–3365. [Google Scholar] [CrossRef]
- Haddad, G.; Lorenzen, J.M.; Ma, H.; de Haan, N.; Seeger, H.; Zaghrini, C.; Brandt, S.; Kölling, M.; Wegmann, U.; Kiss, B.; et al. Altered Glycosylation of IgG4 Promotes Lectin Complement Pathway Activation in Anti-PLA2R1-Associated Membranous Nephropathy. J. Clin. Investig. 2021, 131, e140453. [Google Scholar] [CrossRef]
- Thomas, T.C.; Rollins, S.A.; Rother, R.P.; Giannoni, M.A.; Hartman, S.L.; Elliott, E.A.; Nye, S.H.; Matis, L.A.; Squinto, S.P.; Evans, M.J. Inhibition of Complement Activity by Humanized Anti-C5 Antibody and Single-Chain Fv. Mol. Immunol. 1996, 33, 1389–1401. [Google Scholar] [CrossRef]
- Perico, L.; Casiraghi, F.; Sônego, F.; Todeschini, M.; Corna, D.; Cerullo, D.; Pezzotta, A.; Isnard-Petit, P.; Faravelli, S.; Forneris, F.; et al. Bi-Specific Autoantigen-T Cell Engagers as Targeted Immunotherapy for Autoreactive B Cell Depletion in Autoimmune Diseases. Front. Immunol. 2024, 15, 1335998. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Passerini, P.; Salvadori, M.; Manno, C.; Viola, B.F.; Pasquali, S.; Mandolfo, S.; Messa, P. A Randomized Pilot Trial Comparing Methylprednisolone plus a Cytotoxic Agent versus Synthetic Adrenocorticotropic Hormone in Idiopathic Membranous Nephropathy. Am. J. Kidney Dis. 2006, 47, 233–240. [Google Scholar] [CrossRef]
- Bomback, A.S.; Tumlin, J.A.; Baranski, J.; Bourdeau, J.E.; Besarab, A.; Appel, A.S.; Radhakrishnan, J.; Appel, G.B. Treatment of Nephrotic Syndrome with Adrenocorticotropic Hormone (ACTH) Gel. Drug Des. Devel Ther. 2011, 5, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.; Behera, V.; Agarwal, S.K. ACTH (Corticotrophin) Therapy in Resistant Primary Membranous Nephropathy. Kidney Int. 2019, 96, 250–251. [Google Scholar] [CrossRef]
- Hamilton, P.; Kanigicherla, D.; Hanumapura, P.; Blaikie, K.; Ritchie, J.; Sinha, S.; Brenchley, P.; Mitra, S. Peptide GAM Immunoadsorption in Anti-PLA2 R Positive Autoimmune Membranous Nephropathy. The PRISM Trial. J. Clin. Apher. 2022, 37, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Müller-Deile, J.; Schiffer, L.; Hiss, M.; Haller, H.; Schiffer, M. A New Rescue Regimen with Plasma Exchange and Rituximab in High-Risk Membranous Glomerulonephritis. Eur. J. Clin. Investig. 2015, 45, 1260–1269. [Google Scholar] [CrossRef]
- Weinmann-Menke, J.; Holtz, S.; Sollinger, D.; Dörken, M.; Boedecker, S.; Schamberger, B.; Pfister, F.; Amann, K.; Lutz, J. Treatment of Membranous Nephropathy in Patients with THSD7A Antibodies Using Immunoadsorption. Am. J. Kidney Dis. 2019, 74, 849–852. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, K.; Xu, G. Novel Approaches to Primary Membranous Nephropathy: Beyond the KDIGO Guidelines. Eur. J. Pharmacol. 2024, 982, 176928. [Google Scholar] [CrossRef]
- Chung, E.Y.M.; Wang, Y.M.; Shaw, K.; Ronning, E.; Wang, Y.; Yu Zhang, G.; Hu, M.; Keung, K.; McCarthy, H.J.; Harris, D.C.H.; et al. T Cell Costimulatory Blockade Ameliorates Induction of Experimental Membranous Nephropathy Potentially through T-Helper 17 Cell Suppression in the Kidney. Nephrol. Dial. Transplant. 2025, 40, 2058–2073. [Google Scholar] [CrossRef]
- Guo, L.; Yan, H.; Gong, Q.; Zheng, W.; Zhong, L.; Gong, T.; Sun, X.; Zhang, Z.; Ping, Y.; Zhu, Z.; et al. Glomerulus-Targeted ROS-Responsive Polymeric Nanoparticles for Effective Membranous Nephropathy Therapy. ACS Appl. Mater. Interfaces 2024, 16, 35447–35462. [Google Scholar] [CrossRef]
- Si, S.; Liu, H.; Xu, L.; Zhan, S. Identification of Novel Therapeutic Targets for Chronic Kidney Disease and Kidney Function by Integrating Multi-Omics Proteome with Transcriptome. Genome Med. 2024, 16, 84. [Google Scholar] [CrossRef]
- Meyer, N.; Cooper, W.; Kirwan, P.; Garsia, R.; Dunkley, S.; Gracey, D.M. Primary Membranous Glomerulonephritis with Negative Serum PLA2R in Haemophilia A Successfully Managed with Rituximab—Case Report and Review of the Literature. BMC Nephrol. 2021, 22, 268. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Z.; Wang, P.; Zhang, A.-H. Phospholipase A2 Receptor Antibodies and Clinical Prognosis in Patients with Idiopathic Membranous Nephropathy: An Updated Systematic Review and Meta-Analysis. Kidney Blood Press. Res. 2023, 48, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Ai, S.; Yan, X.; Zhao, X.; Ye, W.; Wen, Y.; Wang, J.; Pan, B.; Dong, J.; Li, X.; Qin, Y. Malignancy-Associated Membranous Nephropathy: Focus on Diagnosis and Treatment. J. Nephrol. 2023, 36, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, X.; Yue, S.; Luo, B.; Song, Z.; Xu, X.; Wang, L.; Hou, X.; Li, K.; Liang, Q.; et al. Segmental Membranous Glomerulopathy in Adults. Kidney Dis. 2023, 9, 507–516. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Glassock, R.J.; Nath, K.A.; Sethi, S.; Fervenza, F.C. A Proposal for a Serology-Based Approach to Membranous Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, P.; Ruggenenti, P.; Sghirlanzoni, M.C.; Remuzzi, G. Titrating Rituximab to Circulating B Cells to Optimize Lymphocytolytic Therapy in Idiopathic Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2007, 2, 932–937. [Google Scholar] [CrossRef]
| Antigen | Year, Technique | Incidence, Outcomes | Possible Clinical Correlations | Pathology Features | Circulating Antibodies | Antigen Characteristics | Antigen Expression |
|---|---|---|---|---|---|---|---|
| PLA2R | 2009, IHC/IF, ELISA | 70–80% of MN | Malignancy (4%), autoimmune diseases, infections | Global GBM deposits, IgG4 mainly, typical C3 positivity | Yes | 169 kDa, transmembrane glycoprotein; mannose receptor family | Strong podocyte |
| NELL1 | 2019, IHC, WB, ELISA, MS | 6–21% PLA2R1-neg MN, higher rate of remission | Malignancy (33%), lipoic acid and mercury-containing herbal medications, NSAIDS, GVHD, autoimmune diseases | Segmental GBM deposits, IgG1 mainly, typical C3 positivity | Yes | 90 kDa, secreted; role in cell growth | Weak podocyte; strong tubules |
| EXT1/2 | 2019, IF/IHC, MS | 30% related to LMN, better outcome vs. EXT1/2 neg forms | SLE, Sjogren, connective tissue diseases; if mutated: inherited skeletal disorder | GBM deposits; concurrent class III/IV LN (25%), IgG1 predominant, IgA, IgM often present, mesangial deposits, C3 and C1q positivity | Not yet reported | 86/82 kDa, transmembrane protein in Golgi, truncated and secreted; exostosin family; glicosyl-transferases | Moderate GBM, tubules |
| NCAM1 | 2021, WB, MS | 6% related to LMN | SLE and other autoimmune diseases | GBM deposits, concurrent class III/IV LN (25%), IgG1 predominant, IgA, IgM often present, mesangial deposits, C3 and C1q positivity | Yes | 95 kDa, transmembrane glycoprotein; Ig superfamily; role in neuronal development | Very weak podocyte, glomerular capillary, TBM |
| TGFBR3 | 2021, WB, MS | 5–10% related to LMN | SLE and other autoimmune diseases | GBM deposits, concurrent class III/IV LN (30%), IgG1 predominant, IgA, IgM often present, mesangial deposits | Not yet reported | >300 kDa, transmembrane glycoprotein | Strong GBM, glomerular capillary |
| FAT1 | 2022, WB, MS | Uncommon | HSCT, GVHD; recessive mutations associated with SRNS | GBM and TBM deposits, IgG4 mainly, C3 absent or weak, protease pretreatment required | Yes | 506 kDa, transmembrane glycoprotein; cadherin family, role in cell–cell recognition/adhesion | Strong podocyte, GBM, TBM |
| CNTN1 | 2020, WB, ELISA, MS | Uncommon | Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) | GBM deposits, IgG4 mainly | Yes | 113 kDa, GPI-linked; Ig superfamily; neural development | Very weak podocyte, GBM |
| NDNF | 2023, WB, MS | Syphilis, 1.2% of PLA2R-neg MN | Syphilis mainly | GBM deposits, IgG1 mainly, IgA, IgM, C3 and C1q positivity | Yes | 65 kDa, secreted; neuronal development | Moderate podocyte |
| PCSK6 | 2023, WB, MS | NDASIDs users. 2% of PLA2R-neg MN | NSAIDs use mainly | GBM deposits, IgG1 and 4 mainly | Yes | 106 kDa, secreted, subtilisin-like proprotein; convertase family; serine protease | Very weak podocyte |
| THSD7A | 2014, IHC/IF | 8–10% PLA2R1-neg MN | Malignancy (20–50%) | GBM deposits, IgG4 mainly | Yes | 185 kDa, transmembrane glycoprotein; angiogenesis | Strong podocyte |
| PCDH7 | 2021, IF/IHC, WB, MS | 5.7% PLA2R1-neg MN, older individuals | Sjogren syndrome, sarcoidosis, malignancy | GBM deposits, IgG4, IgG1, Occasional tubulo-reticular inclusions, C3 absent or weak, protease pretreatment required | Yes | 116 kDa, transmembrane glycoprotein; cadherin family; cell–cell recognition/adhesion | Moderate GBM |
| HTRA1 | 2021, IF/IHC, WB, MS | 3.3% PLA2R1-neg MN | Rarely malignancy, autoimmune diseases | Global GBM deposits, IgG4 dominant, segmental | Yes | 50 kDa; transmembrane glycoprotein | Strong podocyte |
| SEMA3B | 2020, IF/IHC, WB, MS | childhood MN (5–10%), post-transplant recurrence | No underlying condition | Global GBM deposits, TBM deposits, IgG1 mainly, occasional tubule-reticular inclusions, C1q positivity | Yes | 80–90 kDa, secreted; semaphorine family; neuronal development | Strong GBM |
| NTNG1 | 2022, WB, ELISA, MS | 0.2% of MN | No underlying condition; if mutated: Rett syndrome | GBM deposits, IgG4 dominant | Yes | 45.8 kDa; GPI-linked secreted protein | Strong podocyte |
| LRP2 | 2011 (2023), IHC/IF | Uncommon | Related to anti-LRP2 Nephropathy (ex-“anti-brush border antibody disease”); concomitant interstitial nephritis | Segmental GBM deposits; TBM granular deposits mainly, brush border and Bowman’s capsule | Yes | 522 kDa; glycoproteic endocytic receptor (LDL family) | Strong tubular brush border; Podocyte mainly intracellular |
| Other Minor Antigens | 2023, MS | <1% of MN | Variable. Still considered putative. | Varies by antigen, most IgG1 dominant | Not yet reported | Including CRIM1, EFEMP2, MST1, RECK, SEZ6L2 | Variable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Casiraghi, M.A.; Peired, A.J.; Mitrotti, A.; Ravaglia, F.; Spatoliatore, G.; Digennaro, F.; Gesualdo, L.; Vaglio, A. Membranous Nephropathy: Advances in Diagnosis and Treatment, with an Eye on PLA2R1-Negative Forms. Kidney Dial. 2026, 6, 2. https://doi.org/10.3390/kidneydial6010002
Casiraghi MA, Peired AJ, Mitrotti A, Ravaglia F, Spatoliatore G, Digennaro F, Gesualdo L, Vaglio A. Membranous Nephropathy: Advances in Diagnosis and Treatment, with an Eye on PLA2R1-Negative Forms. Kidney and Dialysis. 2026; 6(1):2. https://doi.org/10.3390/kidneydial6010002
Chicago/Turabian StyleCasiraghi, Micaela Anna, Anna J. Peired, Adele Mitrotti, Fiammetta Ravaglia, Giuseppe Spatoliatore, Francesca Digennaro, Loreto Gesualdo, and Augusto Vaglio. 2026. "Membranous Nephropathy: Advances in Diagnosis and Treatment, with an Eye on PLA2R1-Negative Forms" Kidney and Dialysis 6, no. 1: 2. https://doi.org/10.3390/kidneydial6010002
APA StyleCasiraghi, M. A., Peired, A. J., Mitrotti, A., Ravaglia, F., Spatoliatore, G., Digennaro, F., Gesualdo, L., & Vaglio, A. (2026). Membranous Nephropathy: Advances in Diagnosis and Treatment, with an Eye on PLA2R1-Negative Forms. Kidney and Dialysis, 6(1), 2. https://doi.org/10.3390/kidneydial6010002

