Hypomagnesaemia in Renal Transplant Recipients: A Review of Mechanistic Complexity, Diagnostic Gaps, and Emerging Therapeutic Strategies
Abstract
1. Introduction
- −
- Masked Deficiency: Low iMg levels can exist despite normal tMg, leading to delayed diagnosis and potentially exacerbated complications [4,6]. This discrepancy is particularly relevant in recipients with hypoalbuminemia, where a significant portion of tMg may be bound to albumin, masking an underlying deficiency in the active, unbound form [6].
- −
- −
- Clinical Relevance: While tMg remains the dominant test in many centres due to historical precedent and broader availability, the clinical relevance of iMg is increasingly recognised. The proposed normal reference range for iMg is typically cited as 0.48–0.65 mmol/L [10].
2. Objectives and Main Message
- To consolidate the mechanistic understanding of hypomagnesaemia after kidney transplantation, with emphasis on calcineurin inhibitor effects, drug interactions, and comorbid contributors.
- To appraise current and emerging diagnostic approaches—including iMg, albumin-adjusted Mg, and threshold-based definitions—and clarify which remain under-utilised rather than truly novel.
- To explore management strategies ranging from conventional supplementation to pharmacogenomic- and microbiome-informed approaches, while distinguishing validated interventions from hypothesis-generating concepts.
3. Methods
4. Discussion
4.1. Ionized vs. Total Magnesium
4.2. Hypoalbuminemia and Uncorrected Magnesium
4.3. Hypomagnesaemia in Renal Transplant Population
4.3.1. Cardiac Symptoms Manifestations
4.3.2. Neurological and Neuromuscular Manifestations
- −
- Seizure Risk: Seizures associated with hypomagnesaemia typically occur when serum levels fall below 0.5 mmol/L, though individual susceptibility varies considerably [6,7]. In renal transplant recipients, the risk may be further elevated due to concurrent use of medications that lower the seizure threshold, such as certain immunosuppressive agents. Therefore, a proactive approach to Mg repletion may be warranted even at levels slightly above 0.5 mmol/L if other risk factors for seizures are present.
- −
- Neuropsychiatric Symptoms: Depression, anxiety, irritability, and confusion can occur at serum Mg levels below 0.7 mmol/L [6]. These symptoms may be particularly relevant in renal transplant recipients, who already face increased risks of neuropsychiatric complications due to immunosuppressive therapy and the stress of chronic illness.
- −
- Severe CNS Manifestations: Coma and severe neurological dysfunction have been reported in cases of severe hypomagnesaemia with serum levels below 0.3 mmol/L [8].
4.3.3. Concurrent Electrolyte Abnormalities
4.4. Gut Microbiome and Magnesium Homeostasis
4.5. Bone Health and Cognitive Function
4.6. Immunomodulatory Role of Magnesium
4.7. Pharmacogenomics of Tacrolimus-Induced Hypomagnesaemia
4.8. Clinical Implications and Proposed Framework
4.8.1. Risk Stratification Models—Conceptual Prototype and Not for Clinical Use
- −
- Tacrolimus level (higher trough levels indicate increased exposure or rapid metabolism, reducing exposure)
- −
- Albumin levels (hypoalbuminemia increases the risk of uncorrected hypomagnesaemia)
- −
- Ionized Mg levels (as a direct measure of biologically active Mg)
- −
- Proton Pump Inhibitor (PPI) use (a known contributor to Mg malabsorption)
- −
- TRPM6 gene status (identifying genetic predisposition to renal Mg wasting)
- −
- High Risk: Patients receiving high-dose CNI therapy, concurrent PPI use, diabetes mellitus, or those with a history of Mg-related complications. These patients should undergo more frequent monitoring with consideration for iMg measurement when available.
- −
- Moderate Risk: All renal transplant recipients have a high prevalence of hypomagnesaemia in this population. Regular monitoring of serum Mg levels should be incorporated into routine post-transplant care.
- −
- Low Risk: Patients with consistently normal Mg levels and no additional risk factors may require less frequent monitoring, though vigilance should be maintained given the potential for rapid changes in Mg status.
4.8.2. Magnesium Formulation Optimisation
4.8.3. Standardised Data Collection Across Transplant Centres
5. Limitations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- al-Ghamdi, S.M.; Cameron, E.C.; Sutton, R.A. Magnesium deficiency: Pathophysiologic and clinical overview. Am. J. Kidney Dis. 1994, 24, 737–752. [Google Scholar] [CrossRef]
- Riaza Ortiz, C.; Fernández Fernández, C.; Pujol Pujol, M.; Muñiz Rincón, M.; Aiffil Meneses, A.S.; Pérez Flores, I.M.; Calvo Romero, N.; Moreno de la Higuera, M.Á.; Rodríguez Cubillo, B.; Ramos Corral, R.; et al. Prevalence, Risk Factors and Potential Protective Strategies for Hypomagnesemia in Kidney Transplant Recipients. Int. J. Mol. Sci. 2025, 26, 6528. [Google Scholar] [CrossRef]
- Van Laecke, S.; Van Biesen, W. Hypomagnesaemia in kidney transplantation. Transplant. Rev. 2015, 29, 154–160. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yang, J.; Han, M.; Xue, Z.; Wang, Y.; Xu, M.; Qi, H.; Wang, Y. Prediction models for acute kidney injury following liver transplantation: A systematic review and critical appraisal. Intensive Crit. Care Nurs. 2025, 86, 103808. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Moisa, C.; Marc, L.; Olariu, N.; Ratiu, C.A.; Bako, G.C.; Ratiu, A.; Fratila, S.; Teusdea, A.C.; Ganea, M.; et al. The Impact of Hypomagnesemia on the Long-Term Evolution After Kidney Transplantation. Nutrients 2024, 17, 50. [Google Scholar] [CrossRef]
- Assadi, F. Hypomagnesemia: An evidence-based approach to clinical cases. Iran. J. Kidney Dis. 2010, 4, 13–19. [Google Scholar]
- Pham, P.C.; Pham, P.M.; Pham, S.V.; Miller, J.M.; Pham, P.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Billiauws, L.; Maggiori, L.; Joly, F.; Panis, Y. Medical and surgical management of short bowel syndrome. J. Visc. Surg. 2018, 155, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Rosanoff, A.; Costello, R.B.; Johnson, G.H. Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials. Nutrients 2021, 13, 195. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.W.; Nishat, S.M.H.; Alzaabi, A.A.; Alzaabi, F.M.; Al Tarawneh, D.J.; Al Tarawneh, Y.J.; Khan, A.; Khan, M.A.M.; Siddiqui, T.W.; Siddiqui, S.W. The Connection Between Magnesium and Heart Health: Understanding Its Impact on Cardiovascular Wellness. Cureus 2024, 16, e72302. [Google Scholar] [CrossRef]
- NHS Blood and Transpant. Organ Transplant Waiting List Hits Record High as Donor and Transplant Numbers Fall. Available online: https://www.organdonation.nhs.uk/get-involved/news/organ-transplant-waiting-list-hits-record-high-as-donor-and-transplant-numbers-fall/ (accessed on 20 July 2025).
- Solhjoo, M.; Kumar, S.C. New Onset Diabetes After Transplant. (Updated 28 August 2023). Available online: https://www.ncbi.nlm.nih.gov/books/NBK544220/ (accessed on 10 July 2025).
- Van Laecke, S.; Desideri, F.; Geerts, A.; Van Vlierberghe, H.; Berrevoet, F.; Rogiers, X.; Troisi, R.; de Hemptinne, B.; Vanholder, R.; Colle, I. Hypomagnesemia and the risk of new-onset diabetes after liver transplantation. Liver Transplant. 2010, 16, 1278–1287. [Google Scholar] [CrossRef]
- Garnier, A.S.; Duveau, A.; Planchais, M.; Subra, J.F.; Sayegh, J.; Augusto, J.F. Serum Magnesium after Kidney Transplantation: A Systematic Review. Nutrients 2018, 10, 729. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.M.; Elgohary, I.E.; Abouelnaga, S.F.; Elian, F.A.S.; Zeid, M.M. Hypomagnesemia and its association with calcineurin inhibitor use in renal transplant recipients. J. Egypt. Soc. Nephrol. Transplant. 2023, 23, 106. [Google Scholar] [CrossRef]
- Hansen, B.-A.; Bruserud, Ø. Hypomagnesemia in critically ill patients. J. Intensive Care 2018, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Santosh Raju, K.; BhaskaraRao, J.V.; Naidu, B.T.K.; Sunil Kumar, N. A Study of Hypomagnesemia in Patients Admitted to the ICU. Cureus 2023, 15, e41949. [Google Scholar] [CrossRef]
- Dyckner, T.; Wester, P.O. Intracellular magnesium loss after diuretic administration. Drugs 1984, 28 (Suppl. S1), 161–166. [Google Scholar] [CrossRef]
- Fritzen, R.; Davies, A.; Veenhuizen, M.; Campbell, M.; Pitt, S.J.; Ajjan, R.A.; Stewart, A.J. Magnesium Deficiency and Cardiometabolic Disease. Nutrients 2023, 15, 2355. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium and type 2 diabetes. World J. Diabetes 2015, 6, 1152–1157. [Google Scholar] [CrossRef]
- Committee, J.F. British National Formulary 90; British Medical Association and Royal Pharmaceutical Society of Great Britain: London, UK, 2025. [Google Scholar]
- Elin, R.J. Assessment of magnesium status. Clin. Chem. 1987, 33, 1965–1970. [Google Scholar] [CrossRef]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 9041694. [Google Scholar] [CrossRef]
- Reddy, S.T.; Soman, S.S.; Yee, J. Magnesium Balance and Measurement. Adv. Chronic Kidney Dis. 2018, 25, 224–229. [Google Scholar] [CrossRef]
- Touyz, R.M. Magnesium in clinical medicine. Front. Biosci. 2004, 9, 1278–1293. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K.; Genuis, S.J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 2017, 4179326. [Google Scholar] [CrossRef]
- Colaneri-Day, S.; Rosanoff, A. Clinical Guideline for Detection and Management of Magnesium Deficiency in Ambulatory Care. Nutrients 2025, 17, 887. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Del Gobbo, L.C.; Rosanoff, A.; Wang, J.; Zhang, W.; Song, Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension 2016, 68, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: A meta-analysis. J. Intern. Med. 2007, 262, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; Xun, P.; He, K.; Qin, L.Q. Magnesium intake and risk of type 2 diabetes: Meta-analysis of prospective cohort studies. Diabetes Care 2011, 34, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Wang, X.; Han, Y.; Hao, J.; Hu, H.; Hao, L. The level of serum albumin is associated with renal prognosis and renal function decline in patients with chronic kidney disease. BMC Nephrol. 2023, 24, 57. [Google Scholar] [CrossRef]
- Pitliya, A.; Vasudevan, S.S.; Batra, V.; Patel, M.B.; Desai, A.; Nethagani, S.; Pitliya, A. Global prevalence of hypomagnesemia in type 2 diabetes mellitus—A comprehensive systematic review and meta-analysis of observational studies. Endocrine 2024, 84, 842–851. [Google Scholar] [CrossRef]
- Topf, J.M.; Murray, P.T. Hypomagnesemia and hypermagnesemia. Rev. Endocr. Metab. Disord. 2003, 4, 195–206. [Google Scholar] [CrossRef]
- Kingston, M.E.; Al-Siba’i, M.B.; Skooge, W.C. Clinical manifestations of hypomagnesemia. Crit. Care Med. 1986, 14, 950–954. [Google Scholar] [CrossRef]
- Kieboom, B.C.; Niemeijer, M.N.; Leening, M.J.; van den Berg, M.E.; Franco, O.H.; Deckers, J.W.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Serum Magnesium and the Risk of Death From Coronary Heart Disease and Sudden Cardiac Death. J. Am. Heart Assoc. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Z.; Pan, C.; Fang, H.; Xu, W.; Chen, Z.; Zhu, J.; He, L.; Fang, M.; Chen, C. The role of serum magnesium in the prediction of Acute Kidney Injury after total aortic arch replacement: A Prospective Observational study. J. Med. Biochem. 2024, 43, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.H.; Ha, N.; Palmer, B.F.; Perazella, M.A. Acquired Disorders of Hypomagnesemia. Mayo Clin. Proc. 2023, 98, 581–596. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Salvadori, M.; Tsalouchos, A. Microbiota, renal disease and renal transplantation. World J. Transplant. 2021, 11, 16–36. [Google Scholar] [CrossRef]
- Cowan, A.C.; Clemens, K.K.; Sontrop, J.M.; Dixon, S.N.; Killin, L.; Anderson, S.; Acedillo, R.R.; Bagga, A.; Bohm, C.; Brown, P.A.; et al. Magnesium and Fracture Risk in the General Population and Patients Receiving Dialysis: A Narrative Review. Can. J. Kidney Health Dis. 2023, 10, 20543581231154183. [Google Scholar] [CrossRef]
- Matias, P.J.; Ávila, G.; Domingos, D.; Gil, C.; Ferreira, A. Lower serum magnesium levels are associated with a higher risk of fractures and vascular calcifications in hemodialysis patients. Clin. Kidney J. 2024, 18, sfae381. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Patel, V.; Akimbekov, N.S.; Grant, W.B.; Dean, C.; Fang, X.; Razzaque, M.S. Neuroprotective effects of magnesium: Implications for neuroinflammation and cognitive decline. Front. Endocrinol. 2024, 15, 1406455. [Google Scholar] [CrossRef]
- Ashique, S.; Kumar, S.; Hussain, A.; Mishra, N.; Garg, A.; Gowda, B.H.J.; Farid, A.; Gupta, G.; Dua, K.; Taghizadeh-Hesary, F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J. Health Popul. Nutr. 2023, 42, 74. [Google Scholar] [CrossRef]
- Lima, F.d.S.; Santos, M.Q.d.; Makiyama, E.N.; Hoffmann, C.; Fock, R.A. The essential role of magnesium in immunity and gut health: Impacts of dietary magnesium restriction on peritoneal cells and intestinal microbiome. J. Trace Elem. Med. Biol. 2025, 88, 127604. [Google Scholar] [CrossRef]
- Zuo, X.C.; Ng, C.M.; Barrett, J.S.; Luo, A.J.; Zhang, B.K.; Deng, C.H.; Xi, L.Y.; Cheng, K.; Ming, Y.Z.; Yang, G.P.; et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: A population pharmacokinetic analysis. Pharmacogenetics Genom. 2013, 23, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Hannachi, I.; Ben Fredj, N.; Chadli, Z.; Ben Fadhel, N.; Ben Romdhane, H.; Touitou, Y.; Boughattas, N.A.; Chaabane, A.; Aouam, K. Effect of CYP3A4*22 and CYP3A4*1B but not CYP3A5*3 polymorphisms on tacrolimus pharmacokinetic model in Tunisian kidney transplant. Toxicol. Appl. Pharmacol. 2020, 396, 115000. [Google Scholar] [CrossRef]
- Xajil-Ramos, L.Y.; Gándara-Mireles, J.A.; Vargas Rosales, R.J.; Sánchez García, O.K.; Ruano Toledo, A.M.; Aldana de la Cruz, A.K.; Lares-Asseff, I.; Patrón-Romero, L.; Almanza-Reyes, H.; Lou-Meda, R. Impact of CYP3A5 1* and 3* single nucleotide variants on tacrolimus pharmacokinetics and graft rejection risk in pediatric kidney transplant patients. Front. Pharmacol. 2025, 16, 1592134. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Zeier, M.G.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; Kreis, H.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S3), S1–S155. [Google Scholar] [CrossRef]
- Touyz, R.M.; de Baaij, J.H.F.; Hoenderop, J.G.J. Magnesium Disorders. N. Engl. J. Med. 2024, 390, 1998–2009. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Liu, J.; O’Keefe, J.H. Magnesium for the prevention and treatment of cardiovascular disease. Open Heart 2018, 5, e000775. [Google Scholar] [CrossRef]
- Janett, S.; Camozzi, P.; Peeters, G.G.; Lava, S.A.; Simonetti, G.D.; Goeggel Simonetti, B.; Bianchetti, M.G.; Milani, G.P. Hypomagnesemia Induced by Long-Term Treatment with Proton-Pump Inhibitors. Gastroenterol. Res. Pract. 2015, 2015, 951768. [Google Scholar] [CrossRef]
- Brilli, E.; Khadge, S.; Fabiano, A.; Zambito, Y.; Williams, T.; Tarantino, G. Magnesium bioavailability after administration of sucrosomial® magnesium: Results of an ex-vivo study and a comparative, double-blinded, cross-over study in healthy subjects. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1843–1851. [Google Scholar] [CrossRef]
- Stefanelli, L.F.; Alessi, M.; Bertoldi, G.; Rossato, V.; Di Vico, V.; Nalesso, F.; Calò, L.A. Calcineurin-Inhibitor-Induced Hypomagnesemia in Kidney Transplant Patients: A Monocentric Comparative Study between Sucrosomial Magnesium and Magnesium Pidolate Supplementation. J. Clin. Med. 2023, 12, 752. [Google Scholar] [CrossRef]
Construct/Proposal [1,2,3,4,5,6,7,8,9,10] | Current Evidence Base [1,2,3,4,5,6,7,8,9,10] | Validation Status | Key Uncertainties |
---|---|---|---|
Ionised Magnesium (iMg) vs. Total Mg (tMg) | Multiple observational cohorts show iMg predicts PTDM and cardiovascular outcomes more accurately than tMg. | Under-evaluation—superior diagnostic performance demonstrated, but no large prospective validation. | Lack of universal cut-offs, device access and assay variability. |
Albumin-adjusted Mg | Small studies suggest improved classification in hypoalbuminaemia. | Under-utilised—concept not novel but rarely applied in practice. | No outcome data linking adjustment to improved patient outcomes. |
Pharmacogenomics (CYP3A5, TRPM6, ABCB1 polymorphisms) | Observational pharmacokinetic studies; allele-frequency studies in selected populations. | Hypothesis-generating—potentially important for personalised tacrolimus dosing. | Inter-ethnic variability; limited transplant-specific outcome data. |
Gut microbiome modulation | Early pre-clinical and small clinical observations. | Hypothesis-generating—plausible but untested in transplant cohorts. | Lack of RCTs; strain-specific effects unknown. |
Stratification models | Conceptual framework only. | Hypothesis—not validated in any cohort. | Requires derivation and external validation. |
Novel formulations (e.g., sucrosomial Mg, transdermal) | Limited comparative studies: some transplant-specific pilot data. | Under-evaluation—early tolerability data but no outcome trials. | Long-term safety, effectiveness, and transplant-specific validation. |
Complication | General Threshold | Transplant Threshold | Evidence and Clinical Impact |
---|---|---|---|
Increased Cardiovascular Risk | Typically below 0.7 mmol/L [5] with symptoms more likely below 0.5 mmol/L [6,7] | Consider intervention at 0.7–0.8 mmol/L with risk factors | Hypomagnesaemia is a known risk factor for various cardiovascular complications, including cardiac arrhythmias (e.g., TdP) and QT interval prolongation [3,4,10,33]. It can lead to an array of cardiac disorders [32]. |
QT Interval Prolongation | No clear universal threshold identified, but risk increases with lower Mg levels [10] | The reference confirmed the association between lower Mg and QT prolongation but did not identify a specific threshold [10]. Individual susceptibility varies significantly. | |
Severe Arrhythmias and Cardiomyopathy | Below 0.5 mmol/L [16] | Severe Mg deficiency can lead to life-threatening arrhythmias and cardiomyopathy, as demonstrated in hereditary syndromes [16]. | |
Torsades de Pointes | Associated with hypomagnesaemia, but the specific threshold is unclear [10,33]. | Strong association between hypomagnesaemia and increased risk of both ventricular and supraventricular arrhythmias, including TdP [10]. |
Symptom/Manifestation | Associated Serum Magnesium Threshold | Evidence and Clinical Impact |
---|---|---|
Early Neuromuscular Irritability (muscle cramps, fasciculations, hyperreflexia) | Below 0.7 mmol/L [6,7]. Consider intervention at slightly higher levels in renal transplant recipients. | Early symptoms may be subtle and easily overlooked in post-transplant care. Important for early recognition and intervention. |
Neuropsychiatric Symptoms (depression, anxiety, irritability, confusion) | Below 0.7 mmol/L [6] | Particularly relevant in renal transplant recipients who face increased neuropsychiatric risks from immunosuppressive therapy. |
Tetany (positive Chvostek’s and Trousseau’s signs) | Below 0.5 mmol/L [6] | It may be difficult to distinguish from hypocalcemia-induced tetany. Often requires concurrent Mg and calcium replacement. |
Seizures | Below 0.5 mmol/L [6,7]. Proactive repletion may be warranted at levels slightly above 0.5 mmol/L if other seizure risk factors are present. | Individual susceptibility varies. Risk may be elevated in transplant recipients due to concurrent medications that lower seizure threshold. |
Carpopedal Spasm | Below 0.4 mmol/L [8]. | Severe neuromuscular manifestation indicating significant Mg depletion. |
Severe CNS Manifestations (coma, severe neurological dysfunction) | Below 0.3 mmol/L [8] | Life-threatening complications require immediate intervention. |
Study | Type | Thresholds Mentioned | Clinical Findings | Evidence Strength |
---|---|---|---|---|
Kingston et al., 1986 [34] | Prospective observation (n = 20) | <0.5 mmol/L (mean 0.33) | Few symptoms even at very low Mg; manifestations mostly with concurrent hypoCa/K | Small cohort, but direct clinical |
Touyz, de Baaij, Hoenderop, 2024 [51] | Authoritative review | <0.7 = hypoMg; <0.5 = severe symptomatic | Seizures, tremor, tetany, arrhythmias, refractory hypoK/Ca | High (expert review) |
DiNicolantonio, Liu, O’Keefe, 2018 [52] | Narrative CVD review | Risk rises <0.75–0.8 mmol/L | Hypertension, arrhythmias, cardiomyopathy, SCD | Medium (epidemiology-heavy) |
Kieboom et al., 2016 [35] | Prospective cohort (n = 9820) | ≤0.80 mmol/L = risk zone | CHD mortality HR 1.36; SCD HR 1.54; dose–response | Very strong (large cohort) |
Janett et al., [53] | Case series/review | <0.4–0.5 mmol/L | Seizures, tetany, arrhythmias; reversible with stopping PPI | Clinical case-based |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshehawy, M.; Abdelgawad, A.A.; Baig, M.Y.; Morrissey, H.; Ball, P.A. Hypomagnesaemia in Renal Transplant Recipients: A Review of Mechanistic Complexity, Diagnostic Gaps, and Emerging Therapeutic Strategies. Kidney Dial. 2025, 5, 45. https://doi.org/10.3390/kidneydial5030045
Elshehawy M, Abdelgawad AA, Baig MY, Morrissey H, Ball PA. Hypomagnesaemia in Renal Transplant Recipients: A Review of Mechanistic Complexity, Diagnostic Gaps, and Emerging Therapeutic Strategies. Kidney and Dialysis. 2025; 5(3):45. https://doi.org/10.3390/kidneydial5030045
Chicago/Turabian StyleElshehawy, Mahmoud, Alaa Amr Abdelgawad, Mirza Yasar Baig, Hana Morrissey, and Patrick Anthony Ball. 2025. "Hypomagnesaemia in Renal Transplant Recipients: A Review of Mechanistic Complexity, Diagnostic Gaps, and Emerging Therapeutic Strategies" Kidney and Dialysis 5, no. 3: 45. https://doi.org/10.3390/kidneydial5030045
APA StyleElshehawy, M., Abdelgawad, A. A., Baig, M. Y., Morrissey, H., & Ball, P. A. (2025). Hypomagnesaemia in Renal Transplant Recipients: A Review of Mechanistic Complexity, Diagnostic Gaps, and Emerging Therapeutic Strategies. Kidney and Dialysis, 5(3), 45. https://doi.org/10.3390/kidneydial5030045