The Role of Exercise Training in Delaying Kidney Function Decline in Non-Dialysis-Dependent Chronic Kidney Disease
Abstract
:1. Introduction
2. The Pathophysiology of CKD Progression
3. Risk Factors for CKD Progression
4. The Current State of the Research on Exercise Training to Delay CKD Progression
Review Reference | Exercise Training | Inclusions | Studies (or Strata) (n) | Total Exercise Participants | eGFR Results Analysed | eGFR Difference (mL/min/1.73 m2) |
---|---|---|---|---|---|---|
Yamamoto 2021 [115] | Aerobic (± resistance) | (e)GFR < 60 RCTs 1 month + duration English language Cardiometabolic or renal outcomes | 11 | 221 | Between-group mean final eGFR | 0.04 |
Nakamura 2020 [116] | Aerobic or resistance or both | (e)GFR < 60 RCTs or cross-over 1 month + duration 1+ per week Intesity described No language restriction eGFR as outcome | 10 | 238 | Mixture of final eGFR and within-group difference in eGFR | −0.34 |
Wu 2020 [117] | Combined aerobic and resistance | CKD 1–5 (non-dialysis) RCTs and quasi-RCTs Any combined exercise intervention Chinese or English language eGFR as outcome | 6 | 143 | Between-group mean final eGFR a | 5.01 * |
Villanego 2020 [17] | Aerobic (± resistance) | CKD 1–5 (non-dialysis) assignment “described as random” 12 weeks + duration English or Spanish language | 13 | 226 | Within-group change, intervention minus control | −0.14 |
Zhang 2019 [118] | Aerobic (± resistance) | CKD 2–5 (non-dialysis) RCTs 1 month + duration 1 + per week Chinese or English language eGFR as outcome | 18 | 262 | Within-group change, intervention minus control | 2.62 * |
Vanden Wyngaert 2018 [119] | Aerobic (± resistance) | CKD 3–4 (non-dialysis) RCTs 3 month + duration 2 + per week Dutch, English, German or French language eGFR as outcome | 10 | 154 | Within-group change, intervention minus control | 2.16 * |
Study Reference | Groups (n) | Study Duration (Weeks) | Mean eGFR (Baseline) | Other Population Inclusion Criteria | Age (Years) | Exercise Frequency and Time | Aerobic Exercise | Resistance Exercise |
---|---|---|---|---|---|---|---|---|
Aoike 2015, 2018, Baria 2014, Gomes 2017 [102,104,108,112] | H-ET (14); C-ET (13); UC (15) | 12–24 | 26.7 | BMI > 25; male only in Baria 2014 | 55 | 30–50 min, 3 × per wk | Mild-Moderate (VT i.e., 40–60% VO2max): home-based = walking; centre-based = treadmill | Nil |
Barcellos 2018 [113] | ET (76); UC (74) | 16 | 69.0 | Hypertensive, non-diabetic | 65 | 60 min, 3 × per wk, supervised | Step aerobic workout in 30 s bouts as part of circuit training | Body weight, core and dumbbell exercises in 30 s bouts as part of circuit training |
Beetham 2019 [7] | HIIT (9); Moderate ET (5) | 12 | 61.6 | 1+ uncontrolled CVD risk factors (BP, HbA1C, lipids) | 61 | HIIT: 4 × 4 min; Moderate Ex: 40 min 3 days per wk | HIIT: 80–95% PeakHR, Mod Ex: 65% peakHR; treadmill | Nil |
Castaneda 2001/2004 [99,134] | ET + low-protein diet (14); low-protein diet only (12) | 12 | 29.5 | Age > 50 | 64 | 45 min, 3 × per wk | Nil | 3 sets × 8 reps, upper and lower body exercises using resistance training machines; 80% of 1RM |
Eidemak 1997 [96] | ET (15); UC (15) | 78 | 25 | Non-diabetic | 44 | 30 min, daily; unsupervised | 60–75% maximal exercise capacity, static bike, running, swimming or walking | Nil |
Greenwood 2015 [10] | ET (8); UC (10) | 52 | 42.1 | 53 | 40 min, 3 × per wk (2 × supervised, 1 × home) | stationary exercise cycle; 80% HRR | 3 sets × 8–10 reps, upper and lower body exercises using free weights or resistance bands; 80% of 1RM | |
Gregory 2011; Headley 2012 [13,135] | ET (10); UC (11) | 48 | 41.2 | 55 | 45 min, 3 × per wk, supervised | 50–60% VO2peak | Weeks 24–48; 1–3 sets × 10–12 reps; upper and lower body using weight machines | |
Hamada 2016 [106] | ET (47) | 26 | 47.7 | 69 | 90–120 min, 6 × per month | Walking, RPE 12–14 | 3–4 METs | |
Headley 2014, 2017, Miele 2017 [111,136,137] | ET (25); UC (21) | 16 | 47.6 | DM or HTN as primary cause of CKD | 58 | 30–45 min, 3 × per wk, supervised | 50–60% VO2peak, mixed apparatus | Nil |
Hellberg 2019, Zhou 2020 [15,138] | Endurance & strength (73); Endurance and balance (75) | 52 | 19.5 | 66 | 150 min/ wk | 2 × 30 min; RPE 13–15 | 3 × 30 min; RPE 13–17; 2–3 sets × 10 reps; free weight/body weight (resistance) or balance exercises | |
Hiraki 2017 [109] | H-ET (14); UC (14) | 52 | 39.5 | Male | 68 | 30 min daily or 8000–10,000 steps, plus resistance | Walking | Hand grip, squats and calf raises; 20–30 reps 3× per week |
Howden 2013,2015, Beetham 2018, Small 2017, Huppertz 2020 [8,114,120,139,140] | ET and lifestyle intervention (81); UC (80) | 52 | 39.6 | 1 + uncontrolled CVD risk factors (BP, HbA1C, lipids) | 62 | 150 min per wk, beginning with 8 wks 2–3 × per wk supervised in gym; subsequently at home | Moderate, RPE 11–13 | Whole-body with therabands and Swiss ball |
Ikizler 2018 [12] | ET vs usual activity; Calorie restriction vs. usual diet (104 total) | 16 | 42.4 | BMI > 25 | 57 | 30–45 min, 3 × per wk, supervised | 60–80% VO2peak; cycling, treadmill or epliptical | Nil |
Kirkman 2019 [141] | ET (15); UC (16) | 12 | 43 | 58 | 45 min, 3 × per wk; supervised | 60–85% heart rate reserve; cycling, treadmill or epliptical | Nil | |
Kiuchi 2017 [110] | HIIT (25); Mod ET (25) | 156 | 43.1 | HTN | 58 | HIIT: 4–30 min; Mod Ex: 30–60 min 5 days per wk | HIIT: up to maximal intensity; Mod Ex: 55–85% max HR | Nil |
Leehey 2016 [107] | ET + diet (14); Diet alone (18) | 52 | 39.9 | T2DM, obese, male | 66 | 60 min, 3 × per wk; superveised for first 12 wks | 45–85% VO2peak; Treadmill, elliptical or cycle; intervals | Additional 20–30 min/ session |
Leehey 2009 [100] | ET (7); UC (4) | 24 | 45 | Diabetic, BMI > 30, proteinuria | 66 | 30–40 min, 3 × per wk, supervised for first 6 wks | Walking; supervised sessions were up to 60–84% VO2peak | Nil |
Mustata 2011 [101] | ET (10); UC (10) | 52 | 27.5 | 68 | 20–60 min, 5 × per wk (3 unsupervised, 2 supervised) | 40–60% VO2peak, treadmill, cycle, ellipitcal trainer; unsupervised = walking | Nil | |
Nylen 2015 [105] | ET (128) | 12 | 76.1 | T2DM | 62 | 60 min, 2 × per week | Mixed aerobic and resistance; 50–85% HRR | No details |
Pechter 2003 [142] | ET (17); UC (9) | 12 | 65.3 | Proteinuria; 2 + CVD risk factors | 49 | 30 min, 2 × per wk | Aquatic exercise | Nil |
Shi 2014 [103] | ET (11); UC (10) | 12 | 45 | Evidence of CVD | 69 | 30 min, 3–5 × per wk, supervised for first 4 wks | Tai Chi | Nil |
Toyama 2010 [98] | ET (10); UC (9) | 12 | 47.4 | CVD | 72 | 30 min, 7 × per wk (1 × supervised, 6 × home) | 1 × supervised bicycle ergometer; daily walking, RPE 12–13 | Nil |
Van Craenenbroeck 2015 [11] | ET (19); UC (21) | 12 | 38.6 | 53 | 10 min, 4 × per day, at home | Static cycling, 90% HR of anaerobic threshold | Nil |
5. CKD Risk Factors Are Amenable to Exercise Interventions
6. Potential Benefits of Exercise on the Pathological Processes of CKD Progression
7. Summary and Discussion of Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Astor, B.C.; Lewis, J.; Hu, B.; Appel, L.J.; Lipkowitz, M.S.; Toto, R.D.; Wang, X.; Wright, J.T.; Greene, T.H. Longitudinal progression trajectory of GFR among patients with CKD. Am. J. Kidney Dis. 2012, 59, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic Kidney Disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Mende, C.W. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv. Ther. 2022, 39, 148–164. [Google Scholar] [CrossRef]
- Shabaka, A.; Cases-Corona, C.; Fernandez-Juarez, G. Therapeutic Insights in Chronic Kidney Disease Progression. Front. Med. 2021, 8, 645187. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.; Wang, Y.; Wang, C.; Hu, R.; Wu, Y. Effects of exercise training on proteinuria in adult patients with Chronic Kidney Disease: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 172. [Google Scholar] [CrossRef]
- Beetham, K.S.; Howden, E.J.; Fassett, R.G.; Petersen, A.; Trewin, A.J.; Isbel, N.M.; Coombes, J.S. High-intensity interval training in Chronic Kidney Disease: A randomized pilot study. Scand. J. Med. Sci. Sports 2019, 29, 1197–1204. [Google Scholar] [CrossRef]
- Howden, E.J.; Coombes, J.S.; Strand, H.; Douglas, B.; Campbell, K.L.; Isbel, N.M. Exercise training in CKD: Efficacy, adherence, and safety. Am. J. Kidney Dis. 2015, 65, 583–591. [Google Scholar] [CrossRef]
- Rossi, A.P.; Burris, D.D.; Lucas, F.L.; Crocker, G.A.; Wasserman, J.C. Effects of a renal rehabilitation exercise program in patients with CKD: A randomized, controlled trial. Clin. J. Am. Soc. Nephrol. 2014, 9, 2052–2058. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, S.A.; Koufaki, P.; Mercer, T.H.; MacLaughlin, H.L.; Rush, R.; Lindup, H.; O’Connor, E.; Jones, C.; Hendry, B.M.; Macdougall, I.C.; et al. Effect of Exercise Training on Estimated GFR, Vascular Health, and Cardiorespiratory Fitness in Patients With CKD: A Pilot Randomized Controlled Trial. Am. J. Kidney Dis. 2015, 65, 425–434. [Google Scholar] [CrossRef]
- Van Craenenbroeck, A.H.; Van Craenenbroeck, E.M.; Van Ackeren, K.; Vrints, C.J.; Conraads, V.M.; Verpooten, G.A.; Kouidi, E.; Couttenye, M.M. Effect of Moderate Aerobic Exercise Training on Endothelial Function and Arterial Stiffness in CKD Stages 3–4: A Randomized Controlled Trial. Am. J. Kidney Dis. 2015, 66, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Robinson-Cohen, C.; Ellis, C.; Headley, S.A.; Tuttle, K.; Wood, R.J.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; et al. Metabolic effects of diet and exercise in patients with moderate to severe CKD: A randomized clinical trial. J. Am. Soc. Nephrol. 2018, 29, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Headley, S.A.; Germain, M.; Milch, C.; Pescatello, L.; Coughlin, M.A.; Nindl, B.C.; Cornelius, A.; Sullivan, S.; Gregory, S.; Wood, R. Exercise training improves HR responses and VO2peak in predialysis kidney patients. Med. Sci. Sports Exerc. 2012, 44, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.L.; Gould, D.W.; Wilkinson, T.J.; Xenophontos, S.; Clarke, A.L.; Vogt, B.P.; Viana, J.L.; Smith, A.C. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD. Am. J. Physiol. Ren. Physiol. 2018, 314, F1188–F1196. [Google Scholar] [CrossRef] [Green Version]
- Hellberg, M.; Höglund, P.; Svensson, P.; Clyne, N. Randomized Controlled Trial of Exercise in CKD-The RENEXC Study. Kidney Int. Rep. 2019, 4, 963–976. [Google Scholar] [CrossRef] [Green Version]
- Heiwe, S.; Jacobson, S.H. Exercise training in adults with CKD: A systematic review and meta-analysis. Am. J. Kidney Dis. 2014, 64, 383–393. [Google Scholar] [CrossRef]
- Villanego, F.; Naranjo, J.; Vigara, L.A.; Cazorla, J.M.; Montero, M.E.; García, T.; Torrado, J.; Mazuecos, A. Impact of physical exercise in patients with Chronic Kidney Disease: Sistematic review and meta-analysis. Nefrologia 2020, 40, 237–252. [Google Scholar] [CrossRef]
- Martins, P.; Marques, E.A.; Leal, D.V.; Ferreira, A.; Wilund, K.R.; Viana, J.L. Association between physical activity and mortality in end-stage kidney disease: A systematic review of observational studies. BMC Nephrol. 2021, 22, 227. [Google Scholar] [CrossRef]
- Clarke, A.L.; Zaccardi, F.; Gould, D.W.; Hull, K.L.; Smith, A.C.; Burton, J.O.; Yates, T. Association of self-reported physical function with survival in patients with Chronic Kidney Disease. Clin. Kidney J. 2019, 12, 122–128. [Google Scholar] [CrossRef]
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’Sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis Chronic Kidney Disease: A systematic review. Ther. Adv. Chronic Dis. 2018, 9, 209. [Google Scholar] [CrossRef]
- Beddhu, S.; Wei, G.; Marcus, R.L.; Chonchol, M.; Greene, T. Light-Intensity Physical Activities and Mortality in the United States General Population and CKD Subpopulation. Clin. J. Am. Soc. Nephrol. 2015, 10, 1145–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, T.J.; Clarke, A.L.; Nixon, D.G.D.; Hull, K.L.; Song, Y.; Burton, J.O.; Yates, T.; Smith, A.C. Prevalence and correlates of physical activity across kidney disease stages: An observational multicentre study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc. 2019, 36, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, M.S.; Sevick, M.A.; Richardson, C.R.; Fried, L.F.; Arena, V.C.; Kriska, A.M. Association between physical activity and kidney function: National health and nutrition examination survey. Med. Sci. Sports Exerc. 2011, 43, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Robinson-Cohen, C.; Littman, A.J.; Duncan, G.E.; Roshanravan, B.; Alp Ikizler, T.; Himmelfarb, J.; Kestenbaum, B.R. Assessment of Physical Activity in Chronic Kidney Disease. J. Ren. Nutr. 2013, 23, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Martens, R.J.H.; van der Berg, J.D.; Stehouwer, C.D.A.; Henry, R.M.A.; Bosma, H.; Dagnelie, P.C.; van Dongen, M.C.J.M.; Eussen, S.J.P.M.; Schram, M.T.; Sep, S.J.S.; et al. Amount and pattern of physical activity and sedentary behavior are associated with kidney function and kidney damage: The Maastricht Study. PLoS ONE 2018, 13, e0195306. [Google Scholar] [CrossRef]
- Guo, C.; Tam, T.; Bo, Y.; Chang, L.Y.Y.; Lao, X.Q.; Thomas, G.N.; Lao, Q. Habitual physical activity, renal function and Chronic Kidney Disease: A cohort study of nearly 200,000 adults. Br. J. Sports Med. 2020, 54, 1225–1230. [Google Scholar] [CrossRef]
- Robinson-Cohen, C.; Littman, A.J.; Duncan, G.E.; Weiss, N.S.; Sachs, M.C.; Ruzinski, J.; Kundzins, J.; Rock, D.; de Boer, I.H.; Alp Ikizler, T.; et al. Physical Activity and Change in Estimated GFR among Persons with CKD. J. Am. Soc. Nephrol. 2014, 25, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Robinson-Cohen, C.; Katz, R.; Mozaffarian, D.; Dalrymple, L.S.; de Boer, I.; Sarnak, M.; Shlipak, M.; Siscovick, D.; Kestenbaum, B. Physical Activity and Rapid Decline in Kidney Function Among Older Adults. Arch. Intern. Med. 2009, 169, 2116. [Google Scholar] [CrossRef] [Green Version]
- Taal, M.W. Mechanisms of Progression in Chronic Kidney Disease. In Brenner and Rector’s the Kidney, 11th ed.; Yu, A., Chertow, G., Luyckx, V., Marsden, P., Skorecki, K., Taal, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 51; pp. 1742–1789. [Google Scholar]
- Agarwal, A.; Nath, K.A. Chapter 18—Pathophysiology of Chronic Kidney Disease Progression: Organ and Cellular Considerations. In Chronic Renal Disease, 2nd ed.; Kimmel, P.L., Rosenberg, M.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 263–278. [Google Scholar]
- Stenvinkel, P.; Chertow, G.M.; Devarajan, P.; Levin, A.; Andreoli, S.P.; Bangalore, S.; Warady, B.A. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int. Rep. 2021, 6, 1775–1787. [Google Scholar] [CrossRef]
- Fine, L.G.; Norman, J.T. Chronic hypoxia as a mechanism of progression of Chronic Kidney Diseases: From hypothesis to novel therapeutics. Kidney Int. 2008, 74, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Kriz, W.; LeHir, M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 2005, 67, 404–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.C.; Neilson, E.G. Toward a unified theory of renal progression. Annu. Rev. Med. 2006, 57, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Mimura, I.; Nangaku, M. The suffocating kidney: Tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol. 2010, 6, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Theilig, F. Spread of glomerular to tubulointerstitial disease with a focus on proteinuria. Ann. Anat. 2010, 192, 125–132. [Google Scholar] [CrossRef]
- Jefferson, J.A.; Alpers, C.E.; Shankland, S.J. Podocyte biology for the bedside. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2011, 58, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Zoja, C.; Benigni, A.; Remuzzi, G. Cellular responses to protein overload: Key event in renal disease progression. Curr. Opin. Nephrol. Hypertens. 2004, 13, 31–37. [Google Scholar] [CrossRef]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary Protein Intake and the Progressive Nature of Kidney Disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar]
- Takahashi, T.; Harris, R.C. Role of Endothelial Nitric Oxide Synthase in Diabetic Nephropathy: Lessons from Diabetic eNOS Knockout Mice. J. Diabetes Res. 2014, 2014, 590541. [Google Scholar] [CrossRef] [Green Version]
- Kida, Y.; Tchao, B.N.; Yamaguchi, I. Peritubular capillary rarefaction: A new therapeutic target in Chronic Kidney Disease. Pediatr. Nephrol. 2014, 29, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.T.; Fine, L.G. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 2006, 33, 989–996. [Google Scholar] [CrossRef]
- Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 2011, 7, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Kanellis, J.; Hugo, C.; Truong, L.; Anderson, S.; Kerjaschki, D.; Schreiner, G.F.; Johnson, R.J. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 2002, 13, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.L.; Chang, F.C.; Schrimpf, C.; Chen, Y.T.; Wu, C.F.; Wu, V.C.; Chiang, W.C.; Kuhnert, F.; Kuo, C.J.; Chen, Y.M.; et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 2011, 178, 911–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüster, C.; Wolf, G. Renin-angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 2006, 17, 2985–2991. [Google Scholar] [CrossRef] [PubMed]
- Tirichen, H.; Yaigoub, H.; Xu, W.; Wu, C.; Li, R.; Li, Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front. Physiol. 2021, 12, 627837. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxidants Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, S.C. NF-κB in inflammation and renal diseases. Cell Biosci. 2015, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in Chronic Kidney Disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Grande, M.T.; Pérez-Barriocanal, F.; López-Novoa, J.M. Role of inflammation in túbulo-interstitial damage associated to obstructive nephropathy. J. Inflamm. 2010, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Neumann, J.; Ligtenberg, G.; Klein, I.I.; Koomans, H.A.; Blankestijn, P.J. Sympathetic hyperactivity in Chronic Kidney Disease: Pathogenesis, clinical relevance, and treatment. Kidney Int. 2004, 65, 1568–1576. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Young, B.E.; Fadel, P.J. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms. Int. J. Mol. Sci. 2017, 18, 1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiuchi, M.G.; Graciano, M.L.; Carreira, M.A.M.d.Q.; Kiuchi, T.; Chen, S.; Lugon, J.R. Long-Term Effects of Renal Sympathetic Denervation on Hypertensive Patients with Mild to Moderate Chronic Kidney Disease. J. Clin. Hypertens. 2016, 18, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Schreiner, G.F. Hypothesis: The role of acquired tubulointerstitial disease in the pathogenesis of salt-dependent hypertension. Kidney Int. 1997, 52, 1169–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood Pressure and End-Stage Renal Disease in Men. N. Engl. J. Med. 2002, 334, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Hallan, S.I.; Ritz, E.; Lydersen, S.; Romundstad, S.; Kvenild, K.; Orth, S.R. Combining GFR and Albuminuria to Classify CKD Improves Prediction of ESRD. J. Am. Soc. Nephrol. 2009, 20, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y.; Iribarren, C.; McCulloch, C.E.; Darbinian, J.; Go, A.S. Risk Factors for End-Stage Renal Disease. Arch. Intern. Med. 2009, 169, 342. [Google Scholar] [CrossRef] [Green Version]
- Inaguma, D.; Imai, E.; Takeuchi, A.; Ohashi, Y.; Watanabe, T.; Nitta, K.; Akizawa, T.; Matsuo, S.; Makino, H.; Hishida, A. Risk factors for CKD progression in Japanese patients: Findings from the Chronic Kidney Disease Japan Cohort (CKD-JAC) study. Clin. Exp. Nephrol. 2017, 21, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Hunsicker, L.; Adler, S.; Caggiula, A.; England, B.K.; Greene, T.; Kusek, J.W.; Rogers, N.L.; Teschan, P.E. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997, 51, 1908–1919. [Google Scholar]
- Levin, A.; Djurdjev, O.; Beaulieu, M.; Er, L. Variability and Risk Factors for Kidney Disease Progression and Death Following Attainment of Stage 4 CKD in a Referred Cohort. Am. J. Kidney Dis. 2008, 52, 661–671. [Google Scholar] [CrossRef]
- Appel, L.J.; Wright, J.T.J.; Greene, T.; Agodoa, L.Y.; Astor, B.C.; Bakris, G.L.; Cleveland, W.H.; Charleston, J.; Contreras, G.; Faulkner, M.L.; et al. Intensive blood-pressure control in hypertensive Chronic Kidney Disease. N. Engl. J. Med. 2010, 363, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Ku, E.; Sarnak, M.; Toto, R.; McCulloch, C.E.; Lin, F.; Smogorzewski, M.; Hsu, C.Y. Effect of Blood Pressure Control on Long-Term Risk of End-Stage Renal Disease and Death Among Subgroups of Patients with Chronic Kidney Disease. J. Am. Heart Assoc. 2019, 8, e012749. [Google Scholar] [CrossRef] [PubMed]
- Sarafidis, P.A.; Ruilope, L.M.; Loutradis, C.; Gorostidi, M.; de la Sierra, A.; de la Cruz, J.J.; Vinyoles, E.; Divisón-Garrote, J.A.; Segura, J.; Banegas, J.R. Blood pressure variability increases with advancing Chronic Kidney Disease stage: A cross-sectional analysis of 16546 hypertensive patients. J. Hypertens. 2018, 36, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Blood Pressure Variability: Assessment, Predictive Value, and Potential as a Therapeutic Target. Curr. Hypertens. Rep. 2015, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Jhee, J.H.; Seo, J.; Lee, C.J.; Park, J.T.; Han, S.H.; Kang, S.W.; Park, S.; Yoo, T.H. Ambulatory blood pressure variability and risk of cardiovascular events, all-cause mortality, and progression of kidney disease. J. Hypertens. 2020, 38, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Wang, J.; Zhang, L.; Zhao, M.H. Short-term systolic blood pressure variability and kidney disease progression in patients with Chronic Kidney Disease: Results from c-stride. J. Am. Heart Assoc. 2020, 9, e015359. [Google Scholar] [CrossRef]
- Carlström, M.; Wilcox, C.S.; Arendshorst, W.J. Renal autoregulation in health and disease. Physiol. Rev. 2015, 95, 405–511. [Google Scholar] [CrossRef] [Green Version]
- Bidani, A.K.; Griffin, K.A. Pathophysiology of hypertensive renal damage: Implications for therapy. Hypertension 2004, 44, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Ravera, M.; Re, M.; Deferrari, L.; Vettoretti, S.; Deferrari, G. Importance of blood pressure control in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2006, 17, S98–S103. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.J.; Wang, W.; Wang, J.; Wang, L.N.; Yao, L.; Sun, Y.H.; Li, Z.L. Human podocyte injury in the early course of hypertensive renal injury. World J. Clin. Cases 2019, 7, 3698–3710. [Google Scholar] [CrossRef]
- Dharmashankar, K.; Widlansky, M.E. Vascular endothelial function and hypertension: Insights and directions. Curr. Hypertens. Rep. 2010, 12, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Palm, F.; Nordquist, L. Renal oxidative stress, oxygenation, and hypertension. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2011, 301, R1229–R1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, K.L.; Lin, H.J.; Lee, B.C.; Hsu, H.C.; Lee, Y.T.; Chen, M.F. A prediction model for the risk of incident Chronic Kidney Disease. Am. J. Med. 2010, 123, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Grams, M.E.; Ballew, S.H.; Bilo, H.; Correa, A.; Evans, M.; Gutierrez, O.M.; Hosseinpanah, F.; Iseki, K.; Kenealy, T.; et al. Adiposity and risk of decline in glomerular filtration rate: Meta-analysis of individual participant data in a global consortium. BMJ 2019, 364, k5301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navaneethan, S.D.; Yehnert, H.; Moustarah, F.; Schreiber, M.J.; Schauer, P.R.; Beddhu, S. Weight Loss Interventions in Chronic Kidney Disease: A Systematic Review and Meta-analysis. CJASN 2009, 4, 1565–1574. [Google Scholar] [CrossRef] [Green Version]
- Bolignano, D.; Zoccali, C. Effects of Weight Loss on Renal Function in Obese CKD Patients: A Systematic Review. Nephrol. Dial. Transplant. 2013, 28, iv82–iv98. [Google Scholar] [CrossRef] [Green Version]
- Bilha, S.C.; Nistor, I.; Nedelcu, A.; Kanbay, M.; Scripcariu, V.; Timofte, D.; Siriopol, D.; Covic, A. The Effects of Bariatric Surgery on Renal Outcomes: A Systematic Review and Meta-analysis. Obes. Surg. 2018, 28, 3815–3833. [Google Scholar] [CrossRef]
- Wolf, G. After All Those Fat Years: Renal Consequences of Obesity. Nephrol. Dial. Transplant. 2003, 18, 2471–2474. [Google Scholar] [CrossRef] [Green Version]
- Chagnac, A.; Weinstein, T.; Herman, M.; Hirsh, J.; Gafter, U.; Ori, Y. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 2003, 14, 1480–1486. [Google Scholar] [CrossRef] [Green Version]
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of Chronic Kidney Disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef] [Green Version]
- Haroun, M.K.; Jaar, B.G.; Hoffman, S.C.; Comstock, G.W.; Klag, M.J.; Coresh, J. Risk Factors for Chronic Kidney Disease: A Prospective Study of 23,534 Men and Women in Washington County, Maryland. J. Am. Soc. Nephrol. 2003, 14, 2934–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.W.; Ting, I.W.; Yeh, H.C.; Kuo, C.C. Longitudinal change in estimated GFR among CKD patients: A 10-year follow-up study of an integrated kidney disease care program in Taiwan. PLoS ONE 2017, 12, e0173843. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1993, 29, 977–986. [Google Scholar]
- Zoungas, S.; Arima, H.; Gerstein, H.C.; Holman, R.R.; Woodward, M.; Reaven, P.; Hayward, R.A.; Craven, T.; Coleman, R.L.; Chalmers, J. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: A meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017, 5, 431–437. [Google Scholar] [CrossRef]
- Schrijvers, B.F.; De Vriese, A.S.; Flyvbjerg, A. From hyperglycemia to diabetic kidney disease: The role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 2004, 25, 971–1010. [Google Scholar] [CrossRef]
- Reidy, K.; Kang, H.M.; Hostetter, T.; Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 2014, 124, 2333–2340. [Google Scholar] [CrossRef]
- Giunti, S.; Barit, D.; Cooper, M.E. Mechanisms of diabetic nephropathy: Role of hypertension. Hypertension 2006, 48, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Spoto, B.; Pisano, A.; Zoccali, C. Insulin resistance in Chronic Kidney Disease: A systematic review. Am. J. Physiol. Ren. Physiol. 2016, 311, F1087–F1108. [Google Scholar] [CrossRef] [Green Version]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Gallagher, E.J.; Leroith, D.; Karnieli, E. The metabolic syndrome—From insulin resistance to obesity and diabetes. Med. Clin. N. Am. 2011, 95, 855–873. [Google Scholar] [CrossRef]
- Alizadeh, S.; Ahmadi, M.; Ghorbani Nejad, B.; Djazayeri, A.; Shab-Bidar, S. Metabolic syndrome and its components are associated with increased Chronic Kidney Disease risk: Evidence from a meta-analysis on 11,109,003 participants from 66 studies. Int. J. Clin. Pract. 2018, 72, e13201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurella, M.; Lo, J.C.; Chertow, G.M. Metabolic Syndrome and the Risk for Chronic Kidney Disease among Nondiabetic Adults. J. Am. Soc. Nephrol. 2005, 16, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Whaley-Connell, A.; Sowers, J.R. Insulin Resistance in Kidney Disease: Is There a Distinct Role Separate from That of Diabetes or Obesity. Cardiorenal Med. 2017, 8, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Eidemak, I.; Haaber, A.B.; Feldt-Rasmussen, B.; Kanstrup, I.L.L.; Strandgaard, S. Exercise training and the progression of chronic renal failure. Nephron 1997, 75, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Pechter, Ü.; Ots, M.; Mesikepp, S.; Zilmer, K.; Kullissaar, T.; Vihalemm, T.; Zilmer, M.; Maaroos, J. Beneficial effects of water-based exercise in patients with Chronic Kidney Disease. Int. J. Rehabil. Res. 2003, 26, 153–156. [Google Scholar] [PubMed]
- Toyama, K.; Sugiyama, S.; Oka, H.; Sumida, H.; Ogawa, H. Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and Chronic Kidney Disease. J. Cardiol. 2010, 56, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, C.; Gordon, P.L.; Uhlin, K.L.; Levey, A.S.; Kehayias, J.J.; Dwyer, J.T.; Fielding, R.A.; Roubenoff, R.; Singh, M.F. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann. Intern. Med. 2001, 135, 965–976. [Google Scholar] [CrossRef]
- Leehey, D.J.; Moinuddin, I.; Bast, J.P.; Qureshi, S.; Jelinek, C.S.; Cooper, C.; Edwards, L.C.; Smith, B.M.; Collins, E.G. Aerobic exercise in obese diabetic patients with Chronic Kidney Disease: A randomized and controlled pilot study. Cardiovasc. Diabetol. 2009, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Mustata, S.; Groeneveld, S.; Davidson, W.; Ford, G.; Kiland, K.; Manns, B. Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with Chronic Kidney Disease: A pilot study. Int. Urol. Nephrol. 2011, 43, 1133–1141. [Google Scholar] [CrossRef]
- Baria, F.; Kamimura, M.A.; Aoike, D.T.; Ammirati, A.; Leister Rocha, M.; de Mello, M.T.; Cuppari, L. Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight Chronic Kidney Disease patients. Nephrol. Dial. Transplant. 2014, 29, 857–864. [Google Scholar] [CrossRef]
- Shi, Z.M.; Wen, H.P.; Liu, F.R.; Yao, C.X. The effects of tai chi on the renal and cardiac functions of patients with Chronic Kidney and Cardiovascular Diseases. J. Phys. Ther. Sci. 2014, 26, 1733–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoike, D.T.; Baria, F.; Kamimura, M.A.; Ammirati, A.; de Mello, M.T.; Cuppari, L. Impact of home-based aerobic exercise on the physical capacity of overweight patients with Chronic Kidney Disease. Int. Urol. Nephrol. 2015, 47, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Nylen, E.S.; Gandhi, S.M.; Kheirbek, R.; Kokkinos, P. Enhanced fitness and renal function in Type 2 diabetes. Diabet. Med. 2015, 32, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Yasuda, Y.; Kato, S.; Arafuka, H.; Goto, M.; Hayashi, M.; Kajita, E.; Maruyama, S. The effectiveness and safety of modest exercise in Japanese patients with Chronic Kidney Disease: A single-armed interventional study. Clin. Exp. Nephrol. 2016, 20, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Leehey, D.J.; Collins, E.; Kramer, H.J.; Cooper, C.; Butler, J.; McBurney, C.; Jelinek, C.; Reda, D.; Edwards, L.; Garabedian, A.; et al. Structured exercise in obese diabetic patients with Chronic Kidney Disease: A randomized controlled trial. Am. J. Nephrol. 2016, 44, 54–62. [Google Scholar] [CrossRef]
- Gomes, T.S.; Aoike, D.T.; Baria, F.; Graciolli, F.G.; Moyses, R.M.A.; Cuppari, L. Effect of Aerobic Exercise on Markers of Bone Metabolism of Overweight and Obese Patients with Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 364–371. [Google Scholar] [CrossRef]
- Hiraki, K.; Shibagaki, Y.; Izawa, K.P.; Hotta, C.; Wakamiya, A.; Sakurada, T.; Yasuda, T.; Kimura, K. Effects of home-based exercise on pre-dialysis Chronic Kidney Disease patients: A randomized pilot and feasibility trial. BMC Nephrol. 2017, 18, 198. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, M.G.; Chen, S.; Hoye, N.A. The effects of different physical activities on atrial fibrillation in patients with hypertension and Chronic Kidney Disease. Kidney Res. Clin. Pract. 2017, 36, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Miele, E.M.; Headley, S.A.; Germain, M.; Joubert, J.; Herrick, S.; Milch, C.; Evans, E.; Cornelius, A.; Brewer, B.; Taylor, B.; et al. High-density lipoprotein particle pattern and overall lipid responses to a short-term moderate-intensity aerobic exercise training intervention in patients with Chronic Kidney Disease. Clin. Kidney J. 2017, 10, 524–531. [Google Scholar] [CrossRef]
- Aoike, D.T.; Baria, F.; Kamimura, M.A.; Ammirati, A.; Cuppari, L. Home-based versus center-based aerobic exercise on cardiopulmonary performance, physical function, quality of life and quality of sleep of overweight patients with Chronic Kidney Disease. Clin. Exp. Nephrol. 2018, 22, 87–98. [Google Scholar] [CrossRef]
- Barcellos, F.C.; Del Vecchio, F.B.; Reges, A.; Mielke, G.; Santos, I.S.; Umpierre, D.; Bohlke, M.; Hallal, P.C. Exercise in patients with hypertension and Chronic Kidney Disease: A randomized controlled trial. J. Hum. Hypertens. 2018, 32, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Beetham, K.S.; Howden, E.J.; Krishnasamy, R.; Isbel, N.M.; Coombes, J.S. Feasibility of higher intensity exercise in patients with Chronic Kidney Disease. J. Sport. Med. Phys. Fit. 2018, 58, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Ito, T.; Nagasawa, Y.; Matsui, K.; Egawa, M.; Nanami, M.; Isaka, Y.; Okada, H. Efficacy of aerobic exercise on the cardiometabolic and renal outcomes in patients with Chronic Kidney Disease: A systematic review of randomized controlled trials. J. Nephrol. 2021, 34, 155–164. [Google Scholar] [CrossRef]
- Nakamura, K.; Sasaki, T.; Yamamoto, S.; Hayashi, H.; Ako, S.; Tanaka, Y. Effects of exercise on kidney and physical function in patients with non-dialysis Chronic Kidney Disease: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 18195. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, L.; Wang, Y.; Wang, C.; Hu, R.; Wu, Y. Effects of combined aerobic and resistance exercise on renal function in adult patients with Chronic Kidney Disease: A systematic review and meta-analysis. Clin. Rehabil. 2020, 34, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Xiong, L.; Luo, Y.; Huang, Z.; Yi, B. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: Evidence from a meta-analysis. BMC Nephrol. 2019, 20, 398. [Google Scholar] [CrossRef]
- Vanden Wyngaert, K.; Van Craenenbroeck, A.H.; Van Biesen, W.; Dhondt, A.; Tanghe, A.; Van Ginckel, A.; Celie, B.; Calders, P. The effects of aerobic exercise on eGFR, blood pressure and VO2peak in patients with Chronic Kidney Disease stages 3–4: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0203662. [Google Scholar] [CrossRef]
- Howden, E.J.; Leano, R.; Petchey, W.; Coombes, J.S.; Isbel, N.M.; Marwick, T.H. Effects of Exercise and Lifestyle Intervention on Cardiovascular Function in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Chao, M.; Wang, Z.; Al, E. The effects of exercises of different types on renal function and the risk factors associated with cardiovascular disease in patients with Chronic Kidney Disease. Chin. J. Rehabil. Med. 2016, 31, 1234–1238. [Google Scholar]
- Liang, F.; Huo, W.; Ouyang, G.; Ji, P.; Wang, Z.; Wang, L.; Ye, X.-M. Effects of different types of exercise on motor function in patients with Chronic Kidney Disease. Chin. J. Rehabil. Theory Pract. 2018, 24, 208–213. [Google Scholar]
- Zhang, B.; Wu, C.; Gui, P.; Al, E. Effect of structured exercise training on old patients with Chronic Kidney Disease complicated with sarcopenia. Chin. J. Rehabil. Theory Pract. 2019, 25, 1463–1468. [Google Scholar]
- Li, J.X.; Hong, Y.; Chan, K.M. Tai chi: Physiological characteristics and beneficial effects on health. Br. J. Sports Med. 2001, 35, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Lee, Y.; Kim, S.G.; Choi, B.Y.; Lee, H.S.; Bang, S.Y. The beneficial effects of Tai Chi exercise on endothelial function and arterial stiffness in elderly women with rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janmaat, C.J.; van Diepen, M.; van Hagen, C.C.; Rotmans, J.I.; Dekker, F.W.; Dekkers, O.M. Decline of kidney function during the pre-dialysis period in Chronic Kidney Disease patients: A systematic review and meta-analysis. Clin. Epidemiol. 2018, 10, 613–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, A.M.; Batten, A.; Burrows, N.R.; Pavkov, M.E.; Taylor, L.; Gupta, I.; Todd-Stenberg, J.; Maynard, C.; Rodriguez, R.A.; Murtagh, F.E.; et al. Trajectories of Kidney Function Decline in the 2 Years Before Initiation of Long-term Dialysis. Am. J. Kidney Dis. 2012, 59, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Perna, A.; Gherardi, G.; Garini, G.; Zoccali, C.; Salvadori, M.; Scolari, F.; Schena, F.P.; Remuzzi, G. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999, 354, 359–364. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Agodoa, L.Y.; Appel, L.; Bakris, G.L.; Beck, G.; Bourgoignie, J.; Briggs, J.P.; Charleston, J.; Cheek, D.; Cleveland, W.; Douglas, J.G.; et al. Effect of ramipril vs. amlodipine on renal outcomes in hypertensive nephrosclerosis: A randomized controlled trial. JAMA 2001, 285, 2719–2728. [Google Scholar] [CrossRef] [Green Version]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Gordon, P.L.; Parker, R.C.; Uhlin, K.L.; Roubenoff, R.; Levey, A.S. Resistance Training to Reduce the Malnutrition-Inflammation Complex Syndrome of Chronic Kidney Disease. Am. J. Kidney Dis. 2004, 43, 607–616. [Google Scholar]
- Gregory, S.M.; Headley, S.A.; Germain, M.; Flyvbjerg, A.; Frystyk, J.; Coughlin, M.A.; Milch, C.M.; Sullivan, S.; Nindl, B.C. Lack of circulating bioactive and immunoreactive IGF-I changes despite improved fitness in chronic kidney disease patients following 48 weeks of physical training. Growth Horm. IGF Res.: Off. J. Growth Horm. Res. Soc. Int. IGF Res. Soc. 2011, 21, 51–56. [Google Scholar]
- Headley, S.A.; Germain, M.; Wood, R.; Joubert, J.; Milch, C.; Evans, E.; Poindexter, A.; Cornelius, A.; Brewer, B.; Pescatello, L.S.; et al. Short-term aerobic exercise and vascular function in CKD stage 3: A randomized controlled trial. Am. J. Kidney Dis. 2014, 64, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Headley, S.A.; Germain, M.; Wood, R.; Joubert, J.; Milch, C.; Evans, E.; Cornelius, A.; Brewer, B.; Taylor, B.; Pescatello, L.S. Blood pressure response to acute and chronic exercise in chronic kidney disease. Nephrology (Carlton, Vic.) 2017, 22, 72–78. [Google Scholar] [CrossRef]
- Zhou, Y.; Hellberg, M.; Hellmark, T.; Höglund, P.; Clyne, N. Twelve months of exercise training did not halt abdominal aortic calcification in patients with CKD - a sub-study of RENEXC-a randomized controlled trial. BMC Nephrol. 2020, 21, 233. [Google Scholar] [CrossRef]
- Small, D.M.; Beetham, K.S.; Howden, E.J.; Briskey, D.R.; Johnson, D.W.; Isbel, N.M.; Gobe, G.C.; Coombes, J.S. Effects of exercise and lifestyle intervention on oxidative stress in chronic kidney disease. Redox Rep.: Commun. Free Radic. Res. 2017, 22, 127–136. [Google Scholar] [CrossRef]
- Huppertz, N.; Beetham, K.S.; Howden, E.J.; Leicht, A.S.; Isbel, N.M.; Coombes, J.S. A 12-month lifestyle intervention does not improve cardiac autonomic function in patients with chronic kidney disease. Auton. Neurosci.: Basic Clin. 2020, 224, 102642. [Google Scholar] [CrossRef]
- Kirkman, D.L.; Ramick, M.G.; Muth, B.J.; Stock, J.M.; Pohlig, R.T.; Townsend, R.R.; Edwards, D.G. Effects of aerobic exercise on vascular function in nondialysis Chronic Kidney Disease: A randomized controlled trial. Am. J. Physiol. Ren. Physiol. 2019, 316, F898–F905. [Google Scholar] [CrossRef]
- Pechter, U.; Maaroos, J.; Mesikepp, S.; Veraksits, A.; Ots, M. Regular low-intensity aquatic exercise improves cardio-respiratory functional capacity and reduces proteinuria in chronic renal failure patients. Nephrol. Dial. Transplant. 2003, 18, 624–625. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing Kidney Function—Measured and Estimated Glomerular Filtration Rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, T.W.; Komenda, P.; Tangri, N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 2015, 24, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Li, L.; Beck, G.J.; Joffe, M.M.; Froissart, M.; Kusek, J.W.; Zhang, Y.L.; Coresh, J.; et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009, 75, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Chew-Harris, J.S.C.; Florkowski, C.M.; George, P.M.; Elmslie, J.L.; Endre, Z.H. The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men. Ann. Clin. Biochem. 2013, 50, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. CJASN 2008, 3, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, J.; Marcora, S.; Jibani, M.; Roberts, G.; Kumwenda, M.; Glover, R.; Barron, J.; Lemmey, A. GFR Estimation Using Cystatin C Is Not Independent of Body Composition GFR Estim. Using Cystatin C Is Not Indep. Body Compos. 2006, 48, 712–719. [Google Scholar]
- Kazeminia, M.; Daneshkhah, A.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. The Effect of Exercise on the Older Adult’s Blood Pressure Suffering Hypertension: Systematic Review and Meta-Analysis on Clinical Trial Studies. Int. J. Hypertens. 2020, 2020, 2786120. [Google Scholar] [CrossRef]
- Naci, H.; Salcher-Konrad, M.; Dias, S.; Blum, M.R.; Sahoo, S.A.; Nunan, D.; Ioannidis, J.P.A. How Does Exercise Treatment Compare with Antihypertensive Medications? A Network Meta-Analysis of 391 Randomised Controlled Trials Assessing Exercise and Medication Effects on Systolic Blood Pressure. Br. J. Sport. Med. 2019, 53, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Umpierre, D. Physical Activity Advice Only or Structured Exercise Training and Association with HbA 1c Levels in Type 2 Diabetes. JAMA 2011, 305, 1790. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; He, Q.; Zeng, Y.; Cheng, L. Effectiveness of combined exercise in people with type 2 diabetes and concurrent overweight/obesity: A systematic review and meta-analysis. BMJ Open 2021, 11, e046252. [Google Scholar]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twells, L.K.; Harris Walsh, K.; Blackmore, A.; Adey, T.; Donnan, J.; Peddle, J.; Ryan, D.; Farrell, A.; Nguyen, H.; Gao, Z.; et al. Nonsurgical weight loss interventions: A systematic review of systematic reviews and meta-analyses. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2021, 22, e13320. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.; Wiebe, N.; Padwal, R.S.; Gyenes, G.; Headley, S.A.; Radhakrishnan, J.; Graham, M. The effect of exercise on blood pressure in Chronic Kidney Disease: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2019, 14, e0211032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Liu, Y.; Wu, L.; Yang, J.; Jiang, T.; Li, M. Effects of exercise on markers of inflammation and indicators of nutrition in patients with Chronic Kidney Disease: A systematic review and meta-analysis. Int. Urol. Nephrol. 2021, 54, 815–826. [Google Scholar] [CrossRef]
- Van Huffel, L.; Tomson, C.R.; Ruige, J.; Nistor, I.; Van Biesen, W.; Bolignano, D. Dietary restriction and exercise for diabetic patients with Chronic Kidney Disease: A systematic review. PLoS ONE 2014, 9, e113667. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Goodyear, L.J. Invited review: Intracellular signaling in contracting skeletal muscle. J. Appl. Physiol. 2002, 93, 369–383. [Google Scholar] [CrossRef]
- Hellsten, Y.; Nyberg, M. Cardiovascular adaptations to exercise training. Compr. Physiol. 2016, 6, 1–32. [Google Scholar]
- Rivilis, I.; Milkiewicz, M.; Boyd, P.; Goldstein, J.; Brown, M.D.; Egginton, S.; Hansen, F.M.; Hudlicka, O.; Haas, T.L. Differential involvement of MMP-2 and VEGF during muscle stretch- versus shear stress-induced angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1430–H1438. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.D.; Hudlicka, O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: Involvement of VEGF and metalloproteinases. Angiogenesis 2003, 6, 1–14. [Google Scholar] [CrossRef]
- Linke, A.; Schoene, N.; Gielen, S.; Hofer, J.; Erbs, S.; Schuler, G.; Hambrecht, R. Endothelial dysfunction in patients with Chronic Heart Failure: Systemic effects of lower-limb exercise training. J. Am. Coll. Cardiol. 2001, 37, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Høier, B.; Rufener, N.; Bojsen-Møller, J.; Bangsbo, J.; Hellsten, Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J. Physiol. 2010, 588, 3833–3845. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.A. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2009, 34, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.X.; Wang, B.; Wu, Z.K. Aerobic Exercise Training Alleviates Renal Injury by Interfering with Mitochondrial Function in Type-1 Diabetic Mice. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 9081–9089. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zhao, L.; Ma, Y.P.; Liu, J.D. Contribution of mitochondrial function to exercise-induced attenuation of renal dysfunction in spontaneously hypertensive rats. Mol. Cell. Biochem. 2015, 406, 217–225. [Google Scholar] [CrossRef]
- Jorge, L.; Reinecke, N.; Da Silva, W.; Jorge, M.L.S.; Schor, N. Impact of different exercise training on mitochondrial in diabetic nephropathy. J. Diabetes Metab. Disord. Control 2021, 8, 79–85. [Google Scholar] [CrossRef]
- Trøseid, M.; Lappegård, K.T.; Claudi, T.; Damås, J.K.; Mørkrid, L.; Brendberg, R.; Mollnes, T.E. Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome. Eur. Heart J. 2004, 25, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Balan, E.; Diman, A.; Everard, A.; Nielens, H.; Decottignies, A.; Deldicque, L. Endurance training alleviates MCP-1 and TERRA accumulation at old age in human skeletal muscle. Exp. Gerontol. 2021, 153, 111510. [Google Scholar] [CrossRef]
- Baturcam, E.; Abubaker, J.; Tiss, A.; Abu-Farha, M.; Khadir, A.; Al-Ghimlas, F.; Al-Khairi, I.; Cherian, P.; Elkum, N.; Hammad, M.; et al. Physical exercise reduces the expression of RANTES and its CCR5 receptor in the adipose tissue of obese humans. Mediat. Inflamm. 2014, 2014, 627150. [Google Scholar] [CrossRef]
- Soltani, N.; Esmaeil, N.; Marandi, S.M.; Hovsepian, V.; Momen, T.; Shahsanai, A.; Kelishadi, R. Assessment of the Effect of Short-Term Combined High-Intensity Interval Training on TLR4, NF-κB and IRF3 Expression in Young Overweight and Obese Girls. Public Health Genom. 2020, 23, 26–36. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; de Andrade, R.V.; Simões, H.G. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Benatti, F.B.; Pedersen, B.K. Exercise as an anti-inflammatory therapy for rheumatic diseases—Myokine regulation. Nat. Rev. Rheumatol. 2015, 11, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.S.; Wang, C.Y.; Lin, S.L.; Hung, K.C. Decrease in irisin in patients with Chronic Kidney Disease. PLoS ONE 2013, 8, e64025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, T.; Focke, D.; Petroff, D.; Wurst, U.; Richter, J.; Bachmann, A.; Lössner, U.; Kralisch, S.; Kratzsch, J.; Beige, J.; et al. Serum levels of the myokine irisin in relation to metabolic and renal function. Eur. J. Endocrinol. 2014, 170, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto-Mikami, E.; Sato, K.; Kurihara, T.; Hasegawa, N.; Fujie, S.; Fujita, S.; Sanada, K.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Endurance Training-Induced Increase in Circulating Irisin Levels Is Associated with Reduction of Abdominal Visceral Fat in Middle-Aged and Older Adults. PLoS ONE 2015, 10, e0120354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Wang, Q.; Lou, T.; Qin, J.; Jung, S.; Shetty, V.; Li, F.; Wang, Y.; Feng, X.H.; Mitch, W.E.; et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat. Commun. 2017, 8, 1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, E.L.; Baker, L.A.; Wilkinson, T.J.; Gould, D.W.; Graham-Brown, M.P.; Major, R.W.; Ashford, R.U.; Philp, A.; Smith, A.C. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with Chronic Kidney Disease. FASEB J. 2020, 34, 1755–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, C.C.; Cardozo, L.F.M.F.; Stockler-Pinto, M.B.; Esgalhado, M.; Barboza, J.E.; Frauches, R.; Mafra, D. Does resistance exercise performed during dialysis modulate Nrf2 and NF-κB in patients with Chronic Kidney Disease? Life Sci. 2017, 188, 192–197. [Google Scholar] [CrossRef]
- White, D.W.; Raven, P.B. Autonomic neural control of heart rate during dynamic exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef]
- Mueller, P.J. Exercise training and sympathetic nervous system activity: Evidence for physical activity dependent neural plasticity. Clin. Exp. Pharmacol. Physiol. 2007, 34, 377–384. [Google Scholar] [CrossRef]
- Meredith, I.T.; Friberg, P.; Jennings, G.L.; Dewar, E.M.; Fazio, V.A.; Lambert, G.W.; Esler, M.D. Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension 1991, 18, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.S.; Bakris, G.L.; Shahid, I.; Weir, M.R.; Butler, J. Potential Role and Limitations of Estimated Glomerular Filtration Rate Slope Assessment in Cardiovascular Trials: A Review. JAMA Cardiol. 2022, 7, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Grams, M.E.; Sang, Y.; Ballew, S.H.; Matsushita, K.; Astor, B.C.; Carrero, J.J.; Chang, A.R.; Inker, L.A.; Kenealy, T.; Kovesdy, C.P.; et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: An individual participant meta-analysis of observational data. J. Am. Soc. Nephrol. 2019, 30, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Heerspink, H.J.; Tighiouart, H.; Levey, A.S.; Coresh, J.; Gansevoort, R.T.; Simon, A.L.; Ying, J.; Beck, G.J.; Wanner, C.; et al. GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of treatment effects of randomized controlled trials. J. Am. Soc. Nephrol. 2019, 30, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Hoefield, R.A.; Kalra, P.A.; Baker, P.; Lane, B.; New, J.P.; O’Donoghue, D.J.; Foley, R.N.; Middleton, R.J. Factors Associated with Kidney Disease Progression and Mortality in a Referred CKD Population. Am. J. Kidney Dis. 2010, 56, 1072–1081. [Google Scholar] [CrossRef]
- Yang, W.; Xie, D.; Anderson, A.H.; Joffe, M.M.; Greene, T.; Teal, V.; Hsu, C.Y.; Fink, J.C.; He, J.; Lash, J.P.; et al. Association of Kidney Disease Outcomes with Risk Factors for CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2014, 63, 236. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Kirkman, D.L.; Bohmke, N.; Carbone, S.; Garten, R.S.; Rodriguez-Miguelez, P.; Franco, R.L.; Kidd, J.M.; Abbate, A. Exercise intolerance in kidney diseases: Physiological contributors and therapeutic strategies. Am. J. Physiol.-Ren. Physiol. 2021, 320, F161–F173. [Google Scholar] [CrossRef]
- Clarke, A.L.; Young, H.M.L.; Hull, K.L.; Hudson, N.; Burton, J.O.; Smith, A.C. Motivations and barriers to exercise in Chronic Kidney Disease: A qualitative study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2015, 30, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.A.; March, D.S.; Wilkinson, T.J.; Billany, R.E.; Bishop, N.C.; Castle, E.M.; Chilcot, J.; Davies, M.D.; Graham-Brown, M.P.M.; Greenwood, S.A.; et al. Clinical practice guideline exercise and lifestyle in Chronic Kidney Disease. BMC Nephrol. 2022, 23, 201–211. [Google Scholar] [CrossRef]
Study Reference | Session Attendance Compliance | Exercise Intensity Compliance | Exercise Time Compliance | Effect on VO2Peak (mL/kg/min) * |
---|---|---|---|---|
Aoike 2015, 2018, Baria 2014, Gomes 2017 [102,104,108,112] | 84–87% | Not reported | 78% | 2.3–5.4 |
Barcellos 2018 [113] | Not reported a | Not reported | Not reported | Not measured c |
Greenwood 2015 [10] | 79% | Not reported | Not reported | 5.7 |
Headley 2012 [13] | 83% | 650 kcal/week (no target) | Not reported | 1.4 |
Headley 2014, 2017, Miele 2017 [111,136,137] | 95–97% | Not reported | 78% | 1.6 |
Hiraki 2017 [109] | Not reported | Target steps met | Not reported | Not measured |
Howden 2013,2015 [8,120] | Supervised: 70% | Not reported | 57% | 2.8 |
Ikizler 2018 [12] | Not reported b | Not reported | Not reported | No significant difference |
Kirkman 2019 [141] | 92% | “Completed as prescribed” | “Completed as prescribed” | 2.09 |
Kiuchi 2017 [110] | Not reported | Not reported | Not reported | Not measured |
Leehey 2016 [107] | Not reported | Not reported | Not reported | No significant difference |
Leehey 2009 [100] | Not reported | Not reported | Not reported | No significant difference |
Van Craenenbroeck 2015 [11] | 95% | 101% of HR target | Not reported | 5.82 |
Review Reference | SBP Analysis | Result (mmHg), ET vs. UC |
---|---|---|
Zhang 2019 [118] | Final follow-up | −5.61 (−8.99, −2.23) |
Thompson 2019 [155] | Final follow-up | −4.33 (−9.04, 0.38) |
Villanego 2020 [17] | Baseline to follow-up change | −1.68 (−6.80, 3.44) |
Yamamoto 2021 [115] | Final follow-up | −0.75 (−1.24, −0.26) |
Van den Wyngaert 2018 [119] | Baseline to follow-up change | 1.22 (−4.45, 6.90) |
Review Reference | BMI Analysis | Result (kg/m 2), ET vs. UC |
---|---|---|
Zhang 2019 [118] | Final follow-up | −1.32 (−2.39, −0.25) |
Villanego 2020 [17] | Baseline to follow-up change | −0.89 (−1.47, −0.31) |
Wu 2021 [156] | Final follow-up | −0.77 (−1.31, 0.23) |
Yamamoto 2021 [115] | Final follow-up | −0.19 (−0.38, 0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, M.; Sandoo, A.; Macdonald, J. The Role of Exercise Training in Delaying Kidney Function Decline in Non-Dialysis-Dependent Chronic Kidney Disease. Kidney Dial. 2022, 2, 262-286. https://doi.org/10.3390/kidneydial2020026
Davies M, Sandoo A, Macdonald J. The Role of Exercise Training in Delaying Kidney Function Decline in Non-Dialysis-Dependent Chronic Kidney Disease. Kidney and Dialysis. 2022; 2(2):262-286. https://doi.org/10.3390/kidneydial2020026
Chicago/Turabian StyleDavies, Mark, Aamer Sandoo, and Jamie Macdonald. 2022. "The Role of Exercise Training in Delaying Kidney Function Decline in Non-Dialysis-Dependent Chronic Kidney Disease" Kidney and Dialysis 2, no. 2: 262-286. https://doi.org/10.3390/kidneydial2020026