Future Directions for Dialysis
Abstract
:1. Introduction
2. Shortcomings of Current Dialysis
Past Improvements of the Dialysis Concept
3. Innovative Concepts for Uremic Toxin Removal
3.1. Regenerative Medicine
3.2. Conceptual Changes in Removal Process
3.2.1. Personalized Dialysis Schedules
3.2.2. Adsorption
3.2.3. Modification of the Physical Dialysis Conditions
3.2.4. Wearable/Portable Artificial Kidney
4. Green Dialysis
5. Ketoanalogues
6. Xenobiotics
Preservation of Residual Kidney Function
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanholder, R.; Argiles, A.; Jankowski, J. European Uraemic Toxin Work G. A history of uraemic toxicity and of the European Uraemic Toxin Work Group (EUTox). Clin. Kidney J. 2021, 14, 1514–1523. [Google Scholar] [PubMed]
- Himmelfarb, J.; Vanholder, R.; Mehrotra, R.; Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 2020, 16, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, Z.J. History of Peritoneal Access Development. Int. J. Artif. Organs 2006, 29, 2–40. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.-h.; Lv, J.; Garg, A.X.; Knight, J.; et al. World-wide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef]
- Vanholder, R.; Annemans, L.; Brown, E.; Gansevoort, R.; Gout-Zwart, J.J.; Lameire, N.; Morton, R.L.; Oberbauer, R.; Postma, M.J.; European Kidney Health Alliance. Reducing the costs of chronic kidney disease while delivering quality health care: A call to action. Nat. Rev. Nephrol. 2017, 13, 393–409. [Google Scholar] [CrossRef]
- Vanholder, R.; Annemans, L.; Bello, A.K.; Bikbov, B.; Gallego, D.; Gansevoort, R.T.; Lameire, N.; Luyckx, A.V.; Noruisiene, E.; Oostrom, T.; et al. Fighting the unbearable lightness of neglecting kidney health: The decade of the kidney. Clin. Kidney J. 2021, 14, 1719–1730. [Google Scholar] [CrossRef]
- Haller, M.C.; Kainz, A.; Baer, H.; Oberbauer, R. Dialysis Vintage and Outcomes after Kidney Transplantation: A Retrospective Cohort Study. Clin. J. Am. Soc. Nephrol. 2017, 12, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Cupisti, A.; Aucella, F.; Regolisti, G.; Lomonte, C.; Ferraresi, M.; Claudia, D.; Ferraresi, C.; Russo, R.; La Milia, V.; et al. Green nephrology and eco-dialysis: A position statement by the Italian Society of Nephrology. J. Nephrol. 2020, 33, 681–698. [Google Scholar] [CrossRef] [Green Version]
- Grafals, M.S.R. The environmental impactof dialysis vs transplantation. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2016, 16, C74. [Google Scholar]
- Stel, V.S.; de Jong, R.W.; Kramer, A.; Andrusev, A.M.; Baltar, J.M.; Barbullushi, M.; Bell, S.; de la Nuez, P.C.; Cernevskis, H.; Couchoud, C.; et al. Supplemented ERA-EDTA Registry data evaluated the frequency of dialysis, kidney transplantation, and comprehensive conservative management for patients with kidney failure in Europe. Kidney Int. 2021, 100, 182–195. [Google Scholar] [CrossRef]
- Krediet, R.T. Ultrafiltration Failure Is a Reflection of Peritoneal Alterations in Patients Treated with Peritoneal Dialysis. Front. Physiol. 2018, 9, 1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleyer, A.; Hartman, J.; Brannon, P.; Reeves-Daniel, A.; Satko, S.; Russell, G. Characteristics of sudden death in hemodialysis patients. Kidney Int. 2006, 69, 2268–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nistor, I.; Palmer, S.C.; Craig, J.; Saglimbene, V.; Vecchio, M.; Covic, A.; Strippoli, G.F. Convective Versus Diffusive Dialysis Therapies for Chronic Kidney Failure: An Updated Systematic Review of Randomized Controlled Trials. Am. J. Kidney Dis. 2014, 63, 954–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocco, M.V.; Lockridge, R.S.; Beck, G.J.; Eggers, P.W.; Gassman, J.J.; Greene, T.; Larive, B.; Chan, C.T.; Chertow, G.M.; Copland, M.; et al. The effects of frequent nocturnal home hemodialysis: The Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 2011, 80, 1080–1091. [Google Scholar] [CrossRef] [Green Version]
- Song, J.J.; Guyette, J.P.; Gilpin, S.; Gonzalez, G.; Vacanti, J.P.; Ott, H.C. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 2013, 19, 646–651. [Google Scholar] [CrossRef]
- Hopkins, C.; Li, J.; Rae, F.; Little, M.; Little, M. Stem cell options for kidney disease. J. Pathol. 2009, 217, 265–281. [Google Scholar] [CrossRef]
- Tögel, F.E.; Westenfelder, C. Kidney Protection and Regeneration Following Acute Injury: Progress Through Stem Cell Therapy. Am. J. Kidney Dis. 2012, 60, 1012–1022. [Google Scholar] [CrossRef]
- Benigni, A.; Morigi, M.; Remuzzi, G. Kidney regeneration. Lancet 2010, 375, 1310–1317. [Google Scholar] [CrossRef] [Green Version]
- Morigi, M.; Rota, C.; Montemurro, T.; Montelatici, E.; Cicero, V.L.; Imberti, B.; Abbate, M.; Zoja, C.; Cassis, P.; Longaretti, L.; et al. Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury. Stem Cells 2010, 28, 513–522. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Heuvel, L.P.V.D.; Hoenderop, J.G.; Jansen, J.; Wilmer, M.J.; Westheim, A.J.F.; Allebes, W.A.; Stamatialis, D.; Hilbrands, L.B.; Masereeuw, R. Allostimulatory capacity of conditionally immortalized proximal tubule cell lines for bioartificial kidney application. Sci. Rep. 2017, 7, 7103. [Google Scholar] [CrossRef] [Green Version]
- Legallais, C.; Kim, D.; Mihaila, S.M.; Mihajlovic, M.; Figliuzzi, M.; Bonandrini, B.; Salerno, S.; Yengej, F.A.Y.; Rookmaaker, M.B.; Romero, N.S.; et al. Bioengineering Organs for Blood Detoxification. Adv. Healthc. Mater. 2018, 7, e1800430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masereeuw, R.; Stamatialis, D. Creating a Bioartificial Kidney. Int. J. Artif. Organs 2017, 40, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Van Laecke, S.; Glorieux, G.; Verbeke, F.; Castillo-Rodriguez, E.; Ortiz, A. Deleting Death and Dialysis: Conservative Care of Cardio-Vascular Risk and Kidney Function Loss in Chronic Kidney Disease (CKD). Toxins 2018, 10, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, G.; Vanholder, R.; Niwa, T. AST-120 for the management of progression of chronic kidney disease. Int. J. Nephrol. Renov. Dis. 2014, 7, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laville, M.; Fouque, D. Nutritional aspects in hemodialysis. Kidney Int. 2000, 76, S133–S139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, G.; Berl, T.; Beck, G.J.; Remuzzi, G.; Ritz, E.; Arita, K.; Kato, A.; Shimizu, M. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J. Am. Soc. Nephrol. 2015, 26, 1732–1746. [Google Scholar] [CrossRef] [Green Version]
- Cha, R.-H.; Kang, S.W.; Park, C.W.; Cha, D.R.; Na, K.Y.; Kim, S.G.; Yoon, S.A.; Han, S.Y.; Chang, J.H.; Park, S.K.; et al. A Randomized, Controlled Trial of Oral Intestinal Sorbent AST-120 on Renal Function Deterioration in Patients with Advanced Renal Dysfunction. Clin. J. Am. Soc. Nephrol. 2016, 11, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-J.; Jiang, G.-R.; Shan, J.-P.; Lu, W.; Huang, H.-D.; Ji, G.; Wu, P.; Wu, G.-F.; Wang, W.; Zhu, C.; et al. Combination of Maintenance Hemodialysis with Hemoperfusion: A Safe and Effective Model of Artificial Kidney. Int. J. Artif. Organs 2011, 34, 339–347. [Google Scholar] [CrossRef]
- Tijink, M.S.; Wester, M.; Glorieux, G.; Gerritsen, K.G.; Sun, J.; Swart, P.C.; Borneman, Z.; Wessling, M.; Vanholder, R.; Joles, J.A.; et al. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials 2013, 34, 7819–7828. [Google Scholar] [CrossRef]
- Pavlenko, D.; van Geffen, E.; van Steenbergen, M.J. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Sci. Rep. 2016, 6, 34429. [Google Scholar] [CrossRef]
- Agar, J.W. Review: Understanding sorbent dialysis systems. Nephrology 2010, 15, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Nextkidney—The first truly portable home hemodialysis device. Available online: https://www.nextkidney.com/ (accessed on 22 February 2022).
- van Gelder, M.K.; Jong, J.A.W.; Folkertsma, L. Urea removal strategies for dialysate regeneration in a wearable artificial kidney. Biomaterials 2020, 234, 119735. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; Weber, V.; Bammens, B.; Dehaen, W.; Verbeke, K.; Falkenhagen, D.; Evenepoel, P. Removal of the Uremic Retention Solute p-Cresol Using Fractionated Plasma Separation and Adsorption. Artif. Organs 2008, 32, 214–219. [Google Scholar] [CrossRef]
- Wester, M.; Simonis, F.; Gerritsen, K.G.; Boer, W.; Wodzig, W.K.; Kooman, J.P.; Joles, J.A. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: An in vitro study. Nephrol. Dial. Transplant. 2013, 28, 2364–2371. [Google Scholar] [CrossRef] [Green Version]
- Patents by Inventor Joachim Jankowski. Available online: https://patents.justia.com/inventor/joachim-jankowski (accessed on 22 February 2022).
- Krieter, D.H.; Devine, E.; Körner, T.; Rüth, M.; Wanner, C.; Raine, M.; Jankowski, J.; Lemke, H. Haemodiafiltration at increased plasma ionic strength for improved protein-bound toxin removal. Acta Physiol. 2017, 219, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tian, H.; Wang, Y.; Shen, Y.; Zhu, Q.; Ding, F. Effect of Ionic Strength, pH and Chemical Displacers on the Percentage Protein Binding of Protein-Bound Uremic Toxins. Blood Purif. 2019, 47, 351–360. [Google Scholar] [CrossRef]
- Maheshwari, V.; Tao, X.; Thijssen, S.; Kotanko, P. Removal of Protein-Bound Uremic Toxins Using Binding Competitors in Hemodialysis: A Narrative Review. Toxins 2021, 13, 622. [Google Scholar] [CrossRef]
- Herrmann, I.K.; Bernabei, R.E.; Urner, M.; Grass, R.N.; Beck-Schimmer, B.; Stark, W.J. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol. Dial. Transpl. 2011, 26, 2948–2954. [Google Scholar] [CrossRef] [Green Version]
- Himmelfarb, J.; Ratner, B. Wearable artificial kidney: Problems, progress and prospects. Nat. Rev. Nephrol. 2020, 16, 558–559. [Google Scholar] [CrossRef]
- Gura, V.; Rivara, M.B.; Bieber, S.; Munshi, R.; Smith, N.C.; Linke, L.; Kundzins, J.; Beizai, M.; Ezon, C.; Kessler, L.; et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 2016, 1, e86397. [Google Scholar] [CrossRef] [Green Version]
- Huff, C. How artificial kidneys and miniaturized dialysis could save millions of lives. Nature 2020, 579, 186–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, M.R.; Polkinghorne, K.R.; Kerr, P.G.; Agar, J.W.; Hawley, C.M.; McDonald, S.P. Temporal Changes in Mortality Risk by Dialysis Modality in the Australian and New Zealand Dialysis Population. Am. J. Kidney Dis. 2015, 66, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Heaf, J.G.; Wehberg, S. Relative Survival of Peritoneal Dialysis and Haemodialysis Patients: Effect of Cohort and Mode of Dialysis Initiation. PLoS ONE 2014, 9, e90119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Lee, N.R.; Son, S.K.; Kim, J.; Sul, A.R.; Kim, Y.; Park, J.T.; Lee, J.P.; Ryu, D.-R. Comparative study of peritoneal dialysis versus hemodialysis on the clinical outcomes in Korea: A population-based approach. Sci. Rep. 2019, 9, 5905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanholder, R.; Van Biesen, W.; Lameire, N. A swan song for Kt/Vurea. Semin. Dial. 2019, 32, 424–437. [Google Scholar] [CrossRef]
- Vanholder, R.; Glorieux, G.; Eloot, S. Once upon a time in dialysis: The last days of Kt/V? Kidney Int. 2015, 88, 460–465. [Google Scholar] [CrossRef]
- Burnier, M.; Fouque, D. Global warming applied to dialysis: Facts and figures. Nephrol. Dial. Transpl. 2021, 36, 2167–2169. [Google Scholar] [CrossRef]
- Agar, J.W. Conserving water in and applying solar power to haemodialysis: ‘Green Dialysis’ through wiser resource utilization. Nephrology 2010, 15, 448–453. [Google Scholar] [CrossRef]
- Agar, J.W.M.; Barraclough, K.A. Water use in dialysis: Environmental considerations. Nat. Rev. Nephrol. 2020, 16, 556–557. [Google Scholar] [CrossRef]
- Connor, A.; Mortimer, F.; Tomson, C. Clinical Transformation: The Key to Green Nephrology. Nephron Clin. Pract. 2010, 116, c200–c206. [Google Scholar] [CrossRef]
- Connor, A.; Mortimer, F. The green nephrology survey of sustainability in renal units in England, Scotland and Wales. J. Ren. Care 2010, 36, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Nazha, M.; Ferraresi, M.; Vigotti, F.N.; Pereno, A.; Barbero, S. Eco-dialysis: The financial and ecological costs of dialysis waste products: Is a ’cradle-to-cradle’ model feasible for planet-friendly haemodialysis waste management? Nephrol. Dial. Transplant. 2015, 30, 1018–1027. [Google Scholar] [CrossRef]
- Li, A.; Lee, H.-Y.; Lin, Y.-C. The Effect of Ketoanalogues on Chronic Kidney Disease Deterioration: A Meta-Analysis. Nutrients 2019, 11, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-Y.; Sun, C.-Y.; Lee, C.-C.; Wu, I.-W.; Chen, Y.-C.; Lin, Y.-H.; Fang, W.-C.; Pan, H.-C. Ketoanalogue supplements reduce mortality in patients with pre-dialysis advanced diabetic kidney disease: A nationwide population-based study. Clin. Nutr. 2021, 40, 4149–4160. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low–Protein Diet and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 2164–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, M.; Bellizzi, V.; Chauveau, P.; Cupisti, A.; Ecder, T.; Fouque, D.; Garneata, L.; Lin, S.; Mitch, W.; Teplan, V.; et al. Do Ketoanalogues Still Have a Role in Delaying Dialysis Initiation in CKD Predialysis Patients? Semin. Dial. 2013, 26, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Schepers, E.; Glorieux, G.; Vanholder, R. The Gut: The Forgotten Organ in Uremia? Blood Purif. 2010, 29, 130–136. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, R.; Glorieux, G. The intestine and the kidneys: A bad marriage can be hazardous. Clin. Kidney J. 2015, 8, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Klein, K.; Johnson, D.W.; Campbell, K. Pre-, Pro-, and Synbiotics: Do They Have a Role in Reducing Uremic Toxins? A Systematic Review and Meta-Analysis. Int. J. Nephrol. 2012, 2012, 673631. [Google Scholar] [CrossRef] [Green Version]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.-M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.M.; Coombes, J.S.; Forbes, J.M.; Szeto, C.-C.; McWhinney, B.C.; Ungerer, J.P.; Campbell, K.L. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Clin. J. Am. Soc. Nephrol. 2016, 11, 223–231. [Google Scholar] [CrossRef] [PubMed]
- de Mello, V.D.; Paananen, J.; Lindström, J.; Lankinen, M.A.; Shi, L.; Kuusisto, J.; Pihlajamäki, J.; Auriola, S.; Lehtonen, M.; Rolandsson, O.; et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 2017, 7, 46337. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, M.; Pariano, M.; Borghi, M.; Barola, C.; Moretti, S.; Galarini, R.; Mosci, P.; Ricci, M.; Costantini, C.; Giovagnoli, S. Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome. Int. J. Pharm. 2021, 602, 120610. [Google Scholar] [CrossRef]
- Marquez, I.O.; Tambra, S.; Luo, F.Y.; Li, Y.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. Contribution of Residual Function to Removal of Protein-Bound Solutes in Hemodialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, K.L.; Wingard, R.L.; Hakim, R.M.; Eden, S.; Shintani, A.; Wallston, K.A.; Huizinga, M.M.; Elasy, T.A.; Rothman, R.L.; Ikizler, T.A. Low Health Literacy Associates with Increased Mortality in ESRD. J. Am. Soc. Nephrol. 2010, 21, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Schrauben, S.J.; Cavanaugh, K.L.; Fagerlin, A.; Ikizler, T.A.; Ricardo, A.; Eneanya, N.D.; Nunes, J.W. The Relationship of Disease-Specific Knowledge and Health Literacy with the Uptake of Self-Care Behaviors in CKD. Kidney Int. Rep. 2020, 5, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.K.; Kamath, N.S.; El Kossi, M.; El Nahas, A.M. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol. Dial. Transpl. 2010, 25, 3977–3982. [Google Scholar] [CrossRef] [Green Version]
- Wanner, C.; Marx, N. SGLT2 inhibitors: The future for treatment of type 2 diabetes mellitus and other chronic diseases. Diabetologia 2018, 61, 2134–2139. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
Drawbacks | HD | PD |
---|---|---|
High cost per patient | +++ | ++ |
Replaces kidney function only in part | ++ | ++ |
Replaces clearance function only in part | ++ | ++ |
Replaces glomerular function not tubular function | ++ | ++ |
Outcome worse than for cancer | ++ | ++ |
Outcome worse than for kidney transplantation | + | + |
Ecologic burden | +++ 1 | ++ |
Decrease in quality of life | ++ 1 | + |
Decreased flexibility in time schedule and mobility | ++ 1 | − |
Decline of dialysis clearance capacity over time | − | + |
Loss of residual kidney function | ++ | + |
Irregular time schedule | +++ 1 | −/+ 2 |
Improvement of access | Arteriovenous shunt |
Arteriovenous fistula | |
Central vein dialysis catheters | |
Prosthetic access devices | |
Tenckhoff catheters | |
Dialysate buffering | Bicarbonate dialysate |
Pump technology | Rotor pump |
Dialyzer geometry | Flat sheet filters |
Capillary filters | |
Membrane technology | Biocompatible membranes |
High-flux membranes | |
Super-flux membranes | |
Medium-flux membranes | |
Filter sterilization | |
Hemodiafiltration | On-line |
Pre-dilution | |
Post-dilution | |
Mixed dilution | |
Dialysis machines | Automated peritoneal dialysis |
Hemodialysis machines | |
Dialysis water preparation | Reverse osmosis |
Water purification | |
Dialysate temperature regulation | |
Regulation of dialysis water electrolyte content | |
Biocompatible peritoneal dialysis fluid | |
Anticoagulation | Low molecular weight heparins |
Non-heparin anticoagulants (e.g., argatroban) | |
Regional citrate anticoagulation | |
Monitoring | Volume monitoring |
Blood pressure monitoring | |
Ultrafiltration control | |
Sensor technology | |
Feedback systems | |
Access function and patency | |
Peritoneal membrane tests | |
Assessment of dialysis adequacy | Kt/Vurea and variants |
Alternative time schedules | Daily dialysis |
Extended hemodialysis | |
Incremental dialysis | |
Automated peritoneal dialysis | |
Miscellaneous | Dialyzer sterilization |
Alternative peritoneal dialysis osmotic agents |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanholder, R. Future Directions for Dialysis. Kidney Dial. 2022, 2, 153-162. https://doi.org/10.3390/kidneydial2020018
Vanholder R. Future Directions for Dialysis. Kidney and Dialysis. 2022; 2(2):153-162. https://doi.org/10.3390/kidneydial2020018
Chicago/Turabian StyleVanholder, Raymond. 2022. "Future Directions for Dialysis" Kidney and Dialysis 2, no. 2: 153-162. https://doi.org/10.3390/kidneydial2020018
APA StyleVanholder, R. (2022). Future Directions for Dialysis. Kidney and Dialysis, 2(2), 153-162. https://doi.org/10.3390/kidneydial2020018