At-Home Testing to Characterize SARS-CoV-2 Seroprevalence Among Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures
2.3. Statistical Methods
3. Results
3.1. Study Population
3.2. Serological Surveillance
3.3. Symptom Surveillance
3.4. Vaccination
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kao, C.M.; Orenstein, W.A.; Anderson, E.J. The Importance of Advancing Severe Acute Respiratory Syndrome Coronavirus 2 Vaccines in Children. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 72, 515–518. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Children and COVID-19: State-Level Data Report [Internet]. Available online: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report/ (accessed on 19 September 2023).
- Sah, P.; Fitzpatrick, M.C.; Zimmer, C.F.; Abdollahi, E.; Juden-Kelly, L.; Moghadas, S.M.; Singer, B.H.; Galvani, A.P. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci. USA 2021, 118, e2109229118. [Google Scholar] [CrossRef] [PubMed]
- Levorson, R.E.; Christian, E.; Hunter, B.; Sayal, J.; Sun, J.; Bruce, S.A.; Garofalo, S.; Southerland, M.; Ho, S.; Levy, S.; et al. A cross-sectional investigation of SARS-CoV-2 seroprevalence and associated risk factors in children and adolescents in the United States. PLoS ONE 2021, 16, e0259823. [Google Scholar] [CrossRef] [PubMed]
- Lugon, P.; Fuller, T.; Damasceno, L.; Calvet, G.; Resende, P.C.; Matos, A.R.; Fumian, T.M.; Maltaa, F.C.; Salgado, A.D.; Fernandes, F.C.M.; et al. SARS-CoV-2 Infection Dynamics in Children and Household Contacts in a Slum in Rio de Janeiro. Pediatrics 2021, 148, e2021050182. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.E.N.; Jones, J.M.; Deng, Y.; Nycz, E.; Lee, A.; Iachan, R.; Gundlapalli, A.V.; Hall, A.J.; MacNeil, A. Seroprevalence of Infection-Induced SARS-CoV-2 Antibodies—United States, September 2021-February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 606–608. [Google Scholar] [CrossRef]
- Clarke, K.E.N.; Kim, Y.; Jones, J.; Lee, A.; Deng, Y.; Nycz, E.; Iachan, R.; Gundlapalli, A.; Macneil, A.; Hall, A.J. Pediatric Infection-Induced SARS-CoV-2 Seroprevalence Estimation Using Commercial Laboratory Specimens: How Representative Is It of the General U.S. Pediatric Population? [Internet]. Rochester, NY; 2022. Available online: https://papers.ssrn.com/abstract=4092074 (accessed on 25 October 2022).
- Torres, J.P.; Piñera, C.; De La Maza, V.; Lagomarcino, A.J.; Simian, D.; Torres, B.; Urquidi, C.; Valenzuela, M.T.; O’ryan, M. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e458–e465. [Google Scholar] [CrossRef]
- Naz-McLean, S.; Kim, A.; Zimmer, A.; Laibinis, H.; Lapan, J.; Tyman, P.; Hung, J.; Kelly, C.; Nagireddy, H.; Narayanan-Pandit, S.; et al. Feasibility and lessons learned on remote trial implementation from TestBoston, a fully remote, longitudinal, large-scale COVID-19 surveillance study. PLoS ONE 2022, 17, e0269127. [Google Scholar] [CrossRef]
- Woolley, A.E.; Dryden-Peterson, S.; Kim, A.; Naz-McLean, S.; Kelly, C.; Laibinis, H.H.; Bagnall, J.; Livny, J.; Ma, P.; Orzechowski, M.; et al. At-home Testing and Risk Factors for Acquisition of SARS-CoV-2 Infection in a Major US Metropolitan Area. Open Forum Infect. Dis. 2022, 9, ofac505. [Google Scholar] [CrossRef]
- Racey, C.S.; Booth, A.; Albert, A.; Smith, L.W.; Krajden, M.; Murray, M.C.M.; Côté, H.C.F.; Gottschlich, A.; Goldfarb, D.M.; Sadarangani, M.; et al. Seropositivity of SARS-CoV-2 in an unvaccinated cohort in British Columbia, Canada: A cross-sectional survey with dried blood spot samples. BMJ Open 2022, 12, e062567. [Google Scholar] [CrossRef]
- The COVID-19 Community Research Partnership. The COVID-19 Community Research Partnership: A multistate surveillance platform for characterizing the epidemiology of the SARS-CoV-2 pandemic. Biol. Methods Protoc. 2022, 7, bpac033. [Google Scholar]
- Ahmed, A.; DeWitt, M.E.; Dantuluri, K.L.; Castri, P.; Buahin, A.; LaGarde, W.H.; Weintraub, W.S.; Rossman, W.; Santos, R.P.; Gibbs, M.; et al. Characterisation of infection-induced SARS-CoV-2 seroprevalence amongst children and adolescents in North Carolina. Epidemiol. Infect. 2023, 151, e63. [Google Scholar] [CrossRef]
- United States Food & Drug Administration. FDA. FDA; 2021. FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Children 5 Through 11 Years of Age. Available online: https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age (accessed on 20 September 2023).
- United States Food & Drug Administration. FDA. FDA; 2021. Coronavirus (COVID-19) Update: FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Adolescents in Another Important Action in Fight Against Pandemic. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use (accessed on 20 September 2023).
- Hobbs, C.V.; Drobeniuc, J.; Kittle, T.; Williams, J.; Byers, P.; Satheshkumar, P.S.; Inagaki, K.; Stephenson, M.; Kim, S.S.; Patel, M.M.; et al. Estimated SARS-CoV-2 Seroprevalence Among Persons Aged <18 Years—Mississippi, May–September 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 312–315. [Google Scholar] [PubMed]
- Smith, B.K.; Janowski, A.B.; Fremont, A.C.; Adams, L.J.; Dai, Y.N.; Farnsworth, C.W.; Gronowski, A.M.; Roper, S.M.; Wang, D.; Fremont, D.H. Progression of SARS-CoV-2 Seroprevalence in St. Louis, Missouri, through January 2021. mSphere 2021, 6, e0045021. [Google Scholar] [CrossRef]
- Couture, A.; Lyons, B.C.; Mehrotra, M.L.; Sosa, L.; Ezike, N.; Ahmed, F.S.; Brown, C.M.; Yendell, S.; A Azzam, I.; Katić, B.J.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence and Reported Coronavirus Disease 2019 Cases in US Children, August 2020–May 2021. Open Forum Infect. Dis. 2022, 9, ofac044. [Google Scholar] [CrossRef] [PubMed]
- Ulyte, A.; Radtke, T.; Abela, I.A.; Haile, S.R.; Berger, C.; Huber, M.; Schanz, M.; Schwarzmueller, M.; Trkola, A.; Fehr, J.; et al. Clustering and longitudinal change in SARS-CoV-2 seroprevalence in school children in the canton of Zurich, Switzerland: Prospective cohort study of 55 schools. BMJ 2021, 372, n616. [Google Scholar] [CrossRef]
- Zinszer, K.; McKinnon, B.; Bourque, N.; Pierce, L.; Saucier, A.; Otis, A.; Cheriet, I.; Papenburg, J.; Hamelin, M.; Charland, K.; et al. Seroprevalence of SARS-CoV-2 Antibodies Among Children in School and Day Care in Montreal, Canada. JAMA Netw. Open 2021, 4, e2135975. [Google Scholar] [CrossRef]
- DeWitt, M.E.; Tjaden, A.H.; Herrington, D.; Schieffelin, J.; Gibbs, M.; Weintraub, W.S.; Cheriet, I.; Papenburg, J.; Hamelin, M.; Charland, K.; et al. COVID-19 Symptoms by Variant Period in the North Carolina COVID-19 Community Research Partnership, North Carolina, USA. Emerg. Infect. Dis. 2023, 29, 207–211. [Google Scholar] [CrossRef]
- Machado, M.B.; Fajardo, T.C.G.; de Oliveira, L.B.; de Quadros, A.C., Jr.; Catalan, D.T.; Piovesan, K.C.; Garcia, M.E.D.D.; da Silva, M.F.; Dezena, R.d.C.d.A.B.; Passos, S.D. Mild and Asymptomatic Coronavirus Disease in Children, Adolescents, and Household Contacts and Prolonged Viral Excretion. Int. J. Microbiol. 2022, 2022, e5625104. [Google Scholar] [CrossRef] [PubMed]
- Allan-Blitz, L.T.; Hertlein, F.; Klausner, J.D. Prevalence of Asymptomatic Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Youth. Pediatr. Infect. Dis. J. 2021, 40, e132–e133. [Google Scholar] [CrossRef]
- Kugeler, K.J.; Podewils, L.J.; Alden, N.B.; Burket, T.L.; Kawasaki, B.; Biggerstaff, B.J.; Biggs, H.M.; Zacks, R.; Foster, M.A.; Lim, T.; et al. Assessment of SARS-CoV-2 Seroprevalence by Community Survey and Residual Specimens, Denver, Colorado, July–August 2020. Public Health Rep. 2022, 137, 128–136. [Google Scholar] [CrossRef]
- Northstone, K.; Smith, D.; Bowring, C.; Hill, A.; Hobbs, R.; Wells, N.; Biggs, H.M.; Zacks, R.; Foster, M.A.; Lim, T.; et al. The Avon Longitudinal Study of Parents and Children—A resource for COVID-19 research: Home-based antibody testing results, October 2020. An emphasis on self-screening at a population level. Wellcome Open Res. 2021, 6, 34. [Google Scholar] [CrossRef]
- Peeling, R.W.; Wedderburn, C.J.; Garcia, P.J.; Boeras, D.; Fongwen, N.; Nkengasong, J.; Sall, A.; Tanuri, A.; Heymann, D.L. Serology testing in the COVID-19 pandemic response. Lancet Infect. Dis. 2020, 20, e245–e249. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, E.J.; Conserve, D.F.; Dave, G.; Hornik, C.P.; Kuhn, M.L.; Herling, J.L.; Song, M.; Alston, S.; Singler, L.; Schmidt, M.D.; et al. At-home testing to mitigate community transmission of SARS-CoV-2: Protocol for a public health intervention with a nested prospective cohort study. BMC Public Health 2021, 21, 2209. [Google Scholar] [CrossRef] [PubMed]
- Barton, H.J.; Werner, N.E.; Morgen, M.; DeMuri, G.P.; Kelly, M.M.; Wald, E.R.; Warner, G.; Katz, B.; Coller, R.J. Task Analysis of In-Home SARS-CoV-2 Rapid Antigen Testing by Families. Pediatrics 2022, 150, e2022056681. [Google Scholar] [CrossRef]
- Israel, B.A.; Schulz, A.J.; Parker, E.A.; Becker, A.B. Review of Community-Based Research: Assessing Partnership Approaches to Improve Public Health. Annu. Rev. Public Health 1998, 19, 173–202. [Google Scholar] [CrossRef]
- Hoschler, K.; Ijaz, S.; Andrews, N.; Ho, S.; Dicks, S.; Jegatheesan, K.; Poh, J.; Warrener, L.; Kankeyan, T.; Baawuah, F.; et al. SARS Antibody Testing in Children: Development of Oral Fluid Assays for IgG Measurements. Microbiol. Spectr. 2022, 10, e0078621. [Google Scholar] [CrossRef]
- Heinzel, C.; Pinilla, Y.T.; Elsner, K.; Friessinger, E.; Mordmüller, B.; Kremsner, P.G.; Held, J.; Fendel, R.; Kreidenweiss, A. Non-Invasive Antibody Assessment in Saliva to Determine SARS-CoV-2 Exposure in Young Children. Front. Immunol. 2021, 12, 753435. [Google Scholar] [CrossRef]
- Dantuluri, K.L.; Rossman, W.; Lu, L.C.; Dunn, C.O.; Harris, A.M.; Hetherington, T.C.; Priem, J.S.; Ahmed, A.; The COVID-19 Community Research Partnership. Improving Minority Representation Through COVID-19 Community Research Partnership. Infect Dis Diagn Treat [Internet]. 12 January 2023. Available online: https://www.gavinpublishers.com/article/view/improving-minority-representation-through-covid-19-community-research-partnership (accessed on 14 June 2023).
- Tjaden, A.H.; Edelstein, S.L.; Ahmed, N.; Calamari, L.; Dantuluri, K.L.; Gibbs, M.; Hinkelman, A.; Mongraw-Chaffin, M.; Sanders, J.W.; Saydah, S.; et al. Association Between COVID-19 and Consistent Mask Wearing During Contact with Others Outside the Household—A Nested Case–Control Analysis, November 2020–October 2021. Influenza Other Respir Viruses 2023, 17, e13080. Available online: https://onlinelibrary.wiley.com/doi/10.1111/irv.13080 (accessed on 10 June 2023). [CrossRef]
- Fox, T.; Geppert, J.; Dinnes, J.; Scandrett, K.; Bigio, J.; Sulis, G.; Hettiarachchi, D.; Mathangasinghe, Y.; Weeratunga, P.; Wickramasinghe, D.; et al. Antibody Tests for Identification of Current and Past Infection with SARS-CoV-2—Fox, T—2022|Cochrane Library. Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013652.pub2/full (accessed on 24 April 2025).
Characteristic | Did Not Complete Serology Tests, n = 1568 1 | Completed at Least One Valid Serology Test, n = 1058 1 | p-Value 2 |
---|---|---|---|
Age (Years) | <0.001 | ||
2–4 | 304 (19%) | 146 (14%) | |
5–11 | 703 (45%) | 495 (47%) | |
12–17 | 561 (36%) | 417 (39%) | |
Sex | 0.5 | ||
Female | 619 (50%) | 537 (51%) | |
Male | 628 (50%) | 516 (49%) | |
Race | 0.6 | ||
Asian | 48 (4.2%) | 34 (3.3%) | |
Black or African American | 86 (7.5%) | 71 (6.9%) | |
Other | 48 (4.2%) | 48 (4.7%) | |
White | 964 (84%) | 873 (85%) | |
Ethnicity | 0.6 | ||
Hispanic or Latino | 75 (6.4%) | 62 (5.9%) | |
Not Hispanic/Latino | 1060 (90%) | 956 (91%) | |
Unknown | 39 (3.3%) | 28 (2.7%) | |
Number of Comorbidities | 0.044 | ||
None | 825 (76%) | 760 (74%) | |
One | 220 (20%) | 211 (21%) | |
Two or more | 36 (3.3%) | 57 (5.5%) | |
Site | 0.8 | ||
Atrium Health | 1088 (69%) | 748 (71%) | |
Wake Forest Baptist Health | 402 (26%) | 261 (25%) | |
Wake Med Health | 78 (5.0%) | 49 (4.6%) | |
Rurality | 0.046 | ||
Rural | 226 (14%) | 119 (11%) | |
Suburban | 527 (34%) | 384 (36%) | |
Urban | 815 (52%) | 555 (52%) | |
Participated in daily surveys | 1141 (73%) | 1047 (99%) | <0.001 |
Received at least 1 dose of vaccine | 468 (30%) | 644 (61%) | <0.001 |
Received 2 doses of vaccine | 411 (26%) | 593 (56%) | <0.001 |
Incidence | Odds | ||||
---|---|---|---|---|---|
Characteristic | Overall, n = 1058 1 | Infection Induced Antibodies, n = 195 | No Infection induced Antibodies, n = 863 | OR (95% CI) 2 | p-Value |
Age (Years), n (%) | |||||
2–4 | 146 (14) | 25 (13) | 121 (14) | — | |
5–11 | 495 (47) | 76 (39) | 419 (49) | 0.88 (0.54 to 1.46) | 0.61 |
12–17 | 417 (39) | 94 (48) | 323 (37) | 1.41 (0.88 to 2.33) | 0.17 |
Sex (Female), n (%) | 537 (51) | 103 (53) | 434 (51) | 1.11 (0.81 to 1.52) | 0.52 |
Race, n (%) | |||||
White | 873 (83) | 156 (80) | 717 (83) | — | |
Black or African American | 71 (6.7) | 22 (11) | 49 (5.7) | 2.06 (1.19 to 3.47) | 0.008 |
Other | 114 (11) | 17 (8.7) | 97 (11) | 0.81 (0.45 to 1.35) | 0.44 |
Ethnicity, n (%) | |||||
Not Hispanic/Latino | 956 (90) | 172 (88) | 784 (91) | — | |
Hispanic or Latino | 62 (5.9) | 15 (7.7) | 47 (5.4) | 1.45 (0.77 to 2.60) | 0.22 |
Not Specified or unknown | 40 (3.8) | 8 (4.1) | 32 (3.7) | 1.14 (0.48 to 2.40) | 0.75 |
Asthma (Yes), n (%) | 124 (12) | 17 (8.9) | 107 (13) | 0.67 (0.38 to 1.12) | 0.15 |
Other condition (Yes), n (%) 3 | 176 (17) | 30 (15) | 146 (17) | 0.89 (0.57 to 1.35) | 0.60 |
No health conditions, n (%) | 763 (74) | 149 (78) | 614 (73) | 1.33 (0.92 to 1.95) | 0.14 |
Healthcare worker (Yes), n (%) | 87 (36) | 15 (38) | 72 (35) | 1.15 (0.56 to 2.32) | 0.69 |
Rural–urban classification, n (%) | |||||
Urban | 555 (52) | 90 (46) | 465 (54) | — | |
Suburban | 384 (36) | 77 (39) | 307 (36) | 1.30 (0.92 to 1.81) | 0.13 |
Rural | 119 (11) | 28 (14) | 91 (11) | 1.59 (0.97 to 2.54) | 0.058 |
Person in the household, n (%) | |||||
<3 | 138 (57) | 16 (41) | 122 (60) | — | |
3–4 | 71 (29) | 13 (33) | 58 (28) | 1.71 (0.76 to 3.79) | 0.19 |
5 + | 35 (14) | 10 (26) | 25 (12) | 3.05 (1.21 to 7.45) | 0.015 |
Dwelling type, n (%) | |||||
Apartment | 6 (2.5) | 2 (5.1) | 4 (2.0) | — | |
House | 238 (98) | 37 (95) | 201 (98) | 0.37 (0.07 to 2.72) | 0.26 |
Attended in-person class (Yes), n (%) | 185 (76) | 28 (72) | 157 (77) | 0.78 (0.37 to 1.74) | 0.52 |
School type, n (%) | |||||
Private | 85 (17) | 15 (14) | 70 (18) | 0.77 (0.41 to 1.38) | 0.40 |
Public | 414 (83) | 90 (86) | 324 (82) | — | |
Attended daycare (Yes), n (%) | 69 (9.4) | 16 (11) | 53 (9.1) | 1.18 (0.64 to 2.09) | 0.58 |
Attended after school program (Yes), n (%) | 61 (8.3) | 10 (6.6) | 51 (8.8) | 0.74 (0.35 to 1.43) | 0.40 |
Previous COVID-19 diagnosis (Yes), n (%) 4 | 93 (8.9) | 44 (23) | 49 (5.7) | 4.85 (3.11 to 7.55) | <0.001 |
Ever vaccinated (Yes), n (%) | 593 (56) | 46 (24) | 547 (63) | ||
Self-reported infection within 30 days of recorded seroconversion, n (%) 5 | 10 (17) | 10 (29) | 0 (0) |
Characteristic | Total Completed Serology Tests n = 1058 a | Completed 1 Serology Tests n = 373 a | Completed 2 Serology Tests n = 216 a | Completed 3 Serology Tests n = 172 a | Completed 4+ Serology Tests, n = 297 a | p-Value b |
---|---|---|---|---|---|---|
Age group (years), n (%) | 0.21 | |||||
2–4 | 146 (14%) | 58 (16%) | 32 (15%) | 21 (12%) | 35 (12%) | |
5–11 | 495 (47%) | 186 (50%) | 89 (41%) | 78 (45%) | 142 (48%) | |
12–17 | 417 (39%) | 129 (35%) | 95 (44%) | 73 (42%) | 120 (40%) | |
Sex, n (%) | 0.20 | |||||
Female | 537 (51%) | 176 (47%) | 109 (50%) | 99 (58%) | 153 (52%) | |
Male | 516 (49%) | 193 (52%) | 107 (50%) | 73 (42%) | 143 (48%) | |
Unknown | 5 (0.5%) | 4 (1.1%) | 0 (0%) | 0 (0%) | 1 (0.3%) | |
Race, n (%) | ||||||
Black or African American | 71 (6.7%) | 32 (8.6%) | 15 (6.9%) | 11 (6.4%) | 13 (4.4%) | 0.22 c |
White | 873 (83%) | 290 (78%) | 179 (83%) | 144 (84%) | 260 (88%) | |
Other | 102 (9.6%) | 41 (11%) | 21 (9.7%) | 17 (9.9%) | 23 (7.7%) | |
Unknown | 12 (1.1%) | 10 (2.7%) | 1 (0.5%) | 0 (0%) | 1 (0.3%) | |
Ethnicity, n (%) | 0.36 | |||||
Hispanic or Latino | 62 (5.9%) | 22 (5.9%) | 11 (5.1%) | 12 (7.0%) | 17 (5.7%) | |
Not Hispanic/Latino | 956 (90%) | 330 (88%) | 200 (93%) | 156 (91%) | 270 (91%) | |
Unknown | 40 (3.8%) | 21 (5.6%) | 5 (2.3%) | 4 (2.3%) | 10 (3.4%) | |
Rurality, n (%) | 0.10 | |||||
Rural | 119 (11%) | 38 (10%) | 25 (12%) | 26 (15%) | 30 (10%) | |
Suburban | 384 (36%) | 134 (36%) | 64 (30%) | 66 (38%) | 120 (40%) | |
Urban | 555 (52%) | 201 (54%) | 127 (59%) | 80 (47%) | 147 (49%) | |
Site, n (%) | <0.001 | |||||
Atrium Peds | 748 (71%) | 248 (66%) | 140 (65%) | 114 (66%) | 246 (83%) | |
Wake Med Peds | 49 (4.6%) | 14 (3.8%) | 12 (5.6%) | 12 (7.0%) | 11 (3.7%) | |
WFBH Peds | 261 (25%) | 111 (30%) | 64 (30%) | 46 (27%) | 40 (13%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; DeWitt, M.E.; Dantuluri, K.L.; Buahin, A.; Castri, P.; Friedman-Klabanoff, D.; Gibbs, M.; Lagarde, W.H.; Santos, R.P.; Tapp, H.; et al. At-Home Testing to Characterize SARS-CoV-2 Seroprevalence Among Children and Adolescents. COVID 2025, 5, 68. https://doi.org/10.3390/covid5050068
Ahmed A, DeWitt ME, Dantuluri KL, Buahin A, Castri P, Friedman-Klabanoff D, Gibbs M, Lagarde WH, Santos RP, Tapp H, et al. At-Home Testing to Characterize SARS-CoV-2 Seroprevalence Among Children and Adolescents. COVID. 2025; 5(5):68. https://doi.org/10.3390/covid5050068
Chicago/Turabian StyleAhmed, Amina, Michael E. DeWitt, Keerti L. Dantuluri, Asare Buahin, Paola Castri, DeAnna Friedman-Klabanoff, Michael Gibbs, William H. Lagarde, Roberto P. Santos, Hazel Tapp, and et al. 2025. "At-Home Testing to Characterize SARS-CoV-2 Seroprevalence Among Children and Adolescents" COVID 5, no. 5: 68. https://doi.org/10.3390/covid5050068
APA StyleAhmed, A., DeWitt, M. E., Dantuluri, K. L., Buahin, A., Castri, P., Friedman-Klabanoff, D., Gibbs, M., Lagarde, W. H., Santos, R. P., Tapp, H., Uschner, D., & on behalf of the COVID-19 Community Research Partnership. (2025). At-Home Testing to Characterize SARS-CoV-2 Seroprevalence Among Children and Adolescents. COVID, 5(5), 68. https://doi.org/10.3390/covid5050068