Effect of COVID-19 Infection on the Immune Response to the SARS-CoV-2 Vaccine in Rheumatoid Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population
2.3. Measurement of Neutralizing Antibody Titers
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Study Population
3.2. Immunogenicity According to IMRDs SARS-CoV-2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 15 July 2025).
- Altarawneh, H.N.; Chemaitelly, H.; Ayoub, H.H.; Hasan, M.R.; Coyle, P.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Coyle, P.; Al-Kanaani, Z.; et al. Effects of previous infection and vaccination on symptomatic Omicron infections. N. Engl. J. Med. 2022, 387, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Cheng, P.-L.; Huang, W.-N.; Chen, H.-H.; Chen, H.-W.; Chen, J.-P.; Lin, C.-T.; Tang, K.-T.; Hung, W.-T.; Hsieh, T.-Y.; et al. Single-cell RNA sequencing to decipher the immunogenicity of ChAdOx1 nCoV-19/AZD1222 and mRNA-1273 vaccines in patients with autoimmune rheumatic diseases. Front. Immunol. 2022, 13, 920865. [Google Scholar] [CrossRef]
- Bieber, A.; Sagy, I.; Novack, L.; Brikman, S.; Abuhasira, R.; Ayalon, S.; Novofastovski, I.; Abu-Shakra, M.; Mader, R. BNT162b2 mRNA COVID-19 vaccine and booster in patients with autoimmune rheumatic diseases: A national cohort study. Annals of the Rheumatic Diseases. Ann. Rheum. Dis. 2022, 81, 1028–1035. [Google Scholar] [CrossRef]
- Brito-Zerón, P.; Sisó-Almirall, A.; Flores-Chávez, A.; Retamozo, S.; Ramos-Casals, M. SARS-CoV-2 infection in patients with systemic autoimmune diseases. Clin. Exp. Rheumatol. 2021, 39, 676–687. [Google Scholar] [CrossRef]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: A multicentre study. Ann. Rheum. Dis. 2021, 80, 1330–1338. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Solomon, D.H.; Chen, Y.; Ellrodt, J.; Whelan, M.G.; Stratton, J.; Hayashi, K.; Whiteman, N.B.; Chen, L.; Adejoorin, I.; et al. Humoral and cellular immune responses in individuals with rheumatoid arthritis after a third dose of mRNA COVID-19 vaccine. Semin. Arthritis Rheum. 2023, 59, 152177. [Google Scholar] [CrossRef]
- Gaete-Argel, A.; Saavedra-Alarcón, V.; Sauré, D.; Alonso-Palomares, L.; Acevedo, M.L.; Alarcón, M.; Bueno, S.M.; Kalergis, A.M.; Soto-Rifo, R.; Valiente-Echeverría, F.; et al. Impact of homologous and heterologous boosters in neutralizing antibody response against SARS-CoV-2 D614G and Omicron in solid organ transplant recipients and healthy controls. Front. Immunol. 2023, 14, 1135478. [Google Scholar] [CrossRef]
- Gallardo-Nelson, M.J.; Cruces, M.; Gómez, Y.M.; Fuenzalida, C.; Silva, J.; Aravena-Traipi, L.; Nuñez, E.; Gaete-Angel, A.; Rivas-Yáñez, E.; Kalergis, A.M.; et al. 4th booster-dose SARS-CoV-2 heterologous and homologous vaccination in rheumatological patients. Front. Immunol. 2024, 15, 1427501. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Shao, R.; Han, X.; Su, C.; Lu, W. Risk and clinical outcomes of COVID-19 in patients with rheumatic diseases: A systematic review and meta-analysis. Rheumatol. Int. 2021, 41, 843–856. [Google Scholar] [CrossRef]
- Martínez-Fleta, P.; Vicente-Rabaneda, E.F.; Triguero-Martínez, A.; Roy-Vallejo, E.; Uriarte-Ecenarro, M.; Gutiérrez-Rodríguez, F.; Quiroga-Colina, P.; Romero-Robles, A.; Montes, N.; García-Castañeda, N.; et al. Beneficial effect of temporary methotrexate interruption on B and T cell responses upon SARS-CoV-2 vaccination in patients with rheumatoid arthritis or psoriatic arthritis. NPJ Vaccines 2024, 9, 21. [Google Scholar] [CrossRef]
- Shirata, M.; Ito, I.; Tanaka, M.; Murata, K.; Murakami, K.; Ikeda, H.; Oi, I.; Hamao, N.; Nishioka, K.; Hayashi, Y.; et al. Impact of methotrexate on humoral and cellular immune responses to SARS-CoV-2 mRNA vaccination in patients with rheumatoid arthritis. Clin. Exp. Med. 2023, 23, 4707–4720. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.; Mishra, S.; Deepak, P.; Kumar-M, P.; Sharma, A.; Patel, Y.; Kennedy, N.A.; Kim, A.H.J.; Sharma, V.; Sebastian, S. Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: Systematic review and meta-analysis. Autoimmun. Rev. 2021, 21, 102927. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, M.M.; Mrak, D.; Perkmann, T.; Haslacher, H.; Aletaha, D. SARS-CoV-2 vaccination in rituximab-treated patients: Evidence for impaired humoral but inducible cellular immune response. Ann. Rheum. Dis. 2021, 80, 1355–1356. [Google Scholar] [CrossRef] [PubMed]
- Krasselt, M.; Wagner, U.; Nguyen, P.; Pietsch, C.; Boldt, A.; Baerwald, C.; Pierer, M.; Seifert, O. Humoral and cellular response to COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases under real-life conditions. Rheumatology 2022, 61, SI180–SI188. [Google Scholar] [CrossRef]
- Németh, D.; Vágó, H.; Tothfalusi, L.; Ulakcsai, Z.; Becker, D.; Szabó, Z.; Rojkovich, B.; Merkely, B.; Nagy, G. Factors influencing the SARS-CoV-2 infection and vaccination-induced immune response in rheumatoid arthritis. Front. Immunol. 2022, 13, 960001. [Google Scholar] [CrossRef]
- Petty, R.E. Chapter 1—Pediatric Rheumatology: The Study of Rheumatic Diseases in Childhood and Adolescence. In Pediatric Rheumatology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–4.e1. [Google Scholar] [CrossRef]
- Strangfeld, A.; Schäfer, M.; Gianfrancesco, M.A.; Lawson-Tovey, S.; Liew, J.; Ljung, L.; Mateus, E.F.; Richez, C.; Santos, M.J.; Schmajuk, G.; et al. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance. Ann. Rheum. Dis. 2021, 80, 930–942. [Google Scholar] [CrossRef]
- Torres-Rufas, M.; Vicente-Rabaneda, E.F.; Cardeñoso, L.; Gutiérrez, A.; Bong, D.A.; Valero-Martínez, C.; Serra López-Matencio, J.M.; García-Vicuña, R.; González-Gay, M.A.; González-Álvaro, I.; et al. Effectiveness and safety of the COVID-19 vaccine in patients with rheumatoid arthritis in a real-world setting. Vaccines 2024, 12, 672. [Google Scholar] [CrossRef]
- Togt, C.V.D.; Ten Cate, D.F.; den Broeder, N.; Rahamat-Langendoen, J.; van den Bemt, B.V.D.; den Broeder, A.D. Humoral response to COVID-19 vaccines depends on dosage and timing of rituximab in patients with rheumatoid arthritis. Rheumatology 2022, 61, SI175–SI179. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 July 2025).
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Del Bello, A. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.J.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y.; et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 2022, 5, eabc8413. [Google Scholar] [CrossRef]
- Sattler, A.; Angermair, S.; Stockmann, H.; Heim, K.M.; Khadzhynov, D.; Treskatsch, S.; Halleck, F.; Kreis, M.E.; Kotsch, K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Investig. 2021, 131, e145272. [Google Scholar] [CrossRef]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.-C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.-H.; Michailidis, E.; Lorenzi, J.C.C.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 2020, 217, e20201181. [Google Scholar] [CrossRef] [PubMed]
Characteristic | RA (n = 172) | SLE (n = 25) | PsA (n = 9) | AS (n = 5) | VS (n = 3) | SS (n = 4) | Controls (n = 123) |
---|---|---|---|---|---|---|---|
Disease duration, years (median [IQR]) | 7 (5–11) | 6 (3–9) | 3 (2–5) | 3 (1–3) | 6 (4–7.5) | 5.5 (1.75–9) | – |
Treatment | – | ||||||
csDMARDs only, n (%) | 34 (19.77%) | 3 (12%) | 1 (11.11%) | 0 (0%) | 0 (0%) | 2 (50%) | – |
bDMARDs, n (%) | 44 (25.58%) | 3 (12%) | 7 (77.78%) | 5 (100%) | 0 (0%) | 0 (0%) | – |
Corticosteroids, n (%) | 126 (73.26%) | 22 (88%) | 3 (33.3%) | 0(0%) | 3 (100%) | 2 (50%) | – |
Treatment Group | COVID-19 Status | Wuhan ID50_{50}50 Median (IQR) | p-Value | Omicron ID50_{50}50 Median (IQR) | p-Value |
---|---|---|---|---|---|
csDMARD only (n = 40) | Positive | 3576 (11,552–2425) | 0.9 | 6841 (8489–2293) | 0.09 |
Negative | 4574 (8477–2026.5) | 1291 (4523.5–572.6) | |||
bDMARD (n = 59) | Positive | 8722 (12,630–2888) | 0.4 | 2559 (6408–1389) | 0.10 |
Negative | 5078 (15,079–1308) | 1324 (4818–349.5) | |||
Corticosteroid (n = 156) | Positive | 10,023 (21,870–4287) | 0.8 | 4272 (11,844–2199) | 0.0003 |
Negative | 5078 (15,079–1308) | 5079 (15,079–1308) | |||
Healthy controls (n = 123) | Positive | 11,971 (20,354–5266) | 0.0056 | 9667 (16,894–5324) | 2.58 × 10−6 |
Negative | 5282 (13,080–2474.5) | 2511.5 (4709.8–992.9) |
Rheumatologic Patients—Omicron | Control Group—Omicron | Rheumatologic Patients—Wuhan | Control Group—Wuhan | |
---|---|---|---|---|
COVID (−) | 3985 | 4916 | 7616 | 7967 |
COVID (+) | 7308 | 10,812 | 10,516 | 11,971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Nelson, M.J.; Gómez, Y.; Del Villar, J.; Zapata, F. Effect of COVID-19 Infection on the Immune Response to the SARS-CoV-2 Vaccine in Rheumatoid Patients. COVID 2025, 5, 179. https://doi.org/10.3390/covid5100179
Gallardo-Nelson MJ, Gómez Y, Del Villar J, Zapata F. Effect of COVID-19 Infection on the Immune Response to the SARS-CoV-2 Vaccine in Rheumatoid Patients. COVID. 2025; 5(10):179. https://doi.org/10.3390/covid5100179
Chicago/Turabian StyleGallardo-Nelson, Maria Jose, Yolanda Gómez, Javiera Del Villar, and Fernanda Zapata. 2025. "Effect of COVID-19 Infection on the Immune Response to the SARS-CoV-2 Vaccine in Rheumatoid Patients" COVID 5, no. 10: 179. https://doi.org/10.3390/covid5100179
APA StyleGallardo-Nelson, M. J., Gómez, Y., Del Villar, J., & Zapata, F. (2025). Effect of COVID-19 Infection on the Immune Response to the SARS-CoV-2 Vaccine in Rheumatoid Patients. COVID, 5(10), 179. https://doi.org/10.3390/covid5100179