Factors Associated with the Clinical Outcome of Severe Acute Respiratory Syndrome Due to COVID-19 in Brazil, 2024
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Baqui, P.; Bica, I.; Marra, V.; Ercole, A.; van der Schaar, M. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: A cross-sectional observational study. Lancet Glob. Health 2020, 8, e1018–e1026. [Google Scholar] [CrossRef]
- de Souza, W.M.; Buss, L.F.; Candido, D.S.; Carrera, J.P.; Li, S.; Zarebski, A.E.; Faria, N.R. Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nat. Hum. Behav. 2021, 5, 1123–1131. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Nordström, P.; Ballin, M.; Nordström, A. Risk of infection, hospitalization, and death up to 9 months after a second dose of COVID-19 vaccine: A retrospective, total population cohort study in Sweden. Lancet 2022, 399, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.C.; Kim, S.; Barberia, L.; Ribeiro, A.F.; Gurzenda, S.; Ribeiro, K.B.; Nascimento, B. Spatiotemporal pattern of COVID-19 spread in Brazil. Science 2021, 372, 821–826. [Google Scholar] [CrossRef]
- de Miranda, W.D.; da Silva, G.D.M.; Fernandes, L.d.M.M.; Silveira, F.; de Sousa, R.P. Desigualdades de saúde no Brasil: Proposta de priorização para alcance dos Objetivos do Desenvolvimento Sustentável. Cad. Saúde Pública 2023, 39, e00119022. [Google Scholar] [CrossRef] [PubMed]
- da Costa, G.S.; Pellanda, L.C.; Silva, L.H.F.; Santos, R.d.R.M.d.; Tovo-Rodrigues, L.; Genro, B.P.; Fiegenbaum, M.; Genro, J.P. The complex architecture of COVID-19: Clinical determinants and deepening of inequities as three epidemic waves progress. Clinics 2025, 80, 100751. [Google Scholar] [CrossRef]
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasil. Guia de Vigilância Epidemiológica: Emergência de Saúde Pública de Importância Nacional pela Doença pelo Coronavírus 2019—COVID-19, 4th ed.; Ministério da Saúde: Brasília, DF, Brasil, 2022. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/covid-19/publicacoes-tecnicas/guias-e-planos/guia-de-vigilancia-epidemiologica-covid-19/view (accessed on 29 August 2025).
- Corrêa, R.L. Regionalização e Organização Espacial; Ática: São Paulo, Brazil, 2007. [Google Scholar]
- Pagano, M.; Gauvreau, K.; Mattie, H. Principles of Biostatistics, 3rd ed.; Chapman and Hall/CRC: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Conselho Nacional de Saúde, Brasil. Resolução nº 510, de 7 de abril de 2016. Trata das especificidades éticas das pesquisas nas ciências humanas e sociais e de outras que utilizam metodologias próprias dessas áreas. Diário Oficial da União, Brasília, 24 maio 2016. Available online: https://www.gov.br/conselho-nacional-de-saude/pt-br/camaras-tecnicas-e-comissoes/conep/publicacoes/manual-de-orientacao-pendencias-comuns-em-protocolos-de-ciencias-humanas-e-sociais-no-sistema-cep-conep-2a-edicao-2025 (accessed on 29 May 2025).
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ICU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Vahidy, F.S.; Pan, A.P.; Ahnstedt, H.; Munshi, Y.; Choi, H.A.; Tiruneh, Y.; Nasir, K.; Kash, B.A.; Andrieni, J.D.; McCullough, L.D. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis of a large US metropolitan cohort. PLoS ONE 2021, 16, e0245556. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Sci. Transl. Med. 2020, 13, eabd2823. [Google Scholar] [CrossRef]
- Channappanavar, R.; Fett, C.; Mack, M.; Ten Eyck, P.P.; Meyerholz, D.K.; Perlman, S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. Front. Immunol. 2020, 11, 2147. [Google Scholar] [CrossRef]
- Viveiros, A.; Rasmuson, J.; Vu, J.; Mulvagh, S.L.; Yip, C.Y.Y.; Norris, C.M.; Oudit, G.Y. Sex differences in COVID-19: Candidate pathways, genetics of ACE2, and sex hormones. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H296–H304. [Google Scholar] [CrossRef]
- Witkowski, J.M.; Fulop, T.; Bryl, E. Immunosenescence and COVID-19. Mech. Ageing Dev. 2022, 204, 111672. [Google Scholar] [CrossRef]
- Oguz, S.H.; Koca, M.; Yildiz, B.O. Aging versus youth: Endocrine aspects of vulnerability for COVID-19. Rev. Endocr. Metab. Disord. 2022, 23, 185–204. [Google Scholar] [CrossRef]
- Sardinha, D.M.; Loiola, R.S.P.; Ferreira, A.L.; Sá, C.A.F.; Rodrigues, Y.C.; Lima, K.V.B.; Guimarães, R.J.d.P.S.e.; Lima, L.N.G.C. Risk factors associated with the severity of COVID-19 in a region of the Brazilian Amazon. Sci. Rep. 2021, 11, 20569. [Google Scholar] [CrossRef]
- de Souza, F.S.H.; Hojo-Souza, N.S.; Batista, B.D.O.; da Silva, C.M.; Guidoni, D.L. On the analysis of mortality risk factors for hospitalized COVID-19 patients: A data-driven study using the major Brazilian database. PLoS ONE 2021, 16, e0248580. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Darcie Marquitti, F.M.; Paixão da Silva, R.L.; Borges, M.E.; Ferreira da Costa Gomes, M.; Cruz, O.G.; Kraenkel, R.A.; Coutinho, R.M.; Prado, P.I.; Bastos, L.S. Estimating the impact of implementation and timing of the COVID-19 vaccination programme in Brazil: A counterfactual analysis. Lancet Reg. Health—Am. 2022, 17, 100397. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.D.M.D.; Souza, A.A.; Castro, M.S.M.; Miranda, W.D.; Jardim, L.L.; Sousa, R.P. Influence of socioeconomic inequality on the distribution of COVID-19 hospitalizations and deaths in Brazilian municipalities, 2020: An ecological study. Epidemiol. Serv. Saude Rev. Sist. Unico Saude Bras. 2023, 32, e2022303. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.E.; Luz, P.M.; Pires, D.C.; Jalil, E.M.; Perazzo, H.; Torres, T.S.; Cardoso, S.W.; Peixoto, E.M.; Nazer, S.; Massad, E.; et al. SARS-CoV-2 transmission in a highly vulnerable population of Brazil: A household cohort study. Lancet Reg. Health–Am. 2024, 36, 100824. [Google Scholar] [CrossRef]
- Sanhueza-Sanzana, C.; Aguiar, I.W.O.; Almeida, R.L.F.; Kendall, C.; Mendes, A.; Kerr, L.R.F.S. Social inequalities associated with COVID-19 case fatality rate in Fortaleza, Ceará state, Brazil, 2020. Epidemiol. Serv. Saude Rev. Sist. Unico Saude Bras. 2021, 30, e2020743. [Google Scholar] [CrossRef]
- Zanlourensi, C.B.; Boing, A.F. Intrastate inequality of COVID-19 vaccination coverage: Spatial analysis and socioeconomic, Santa Catarina, 2021–2023. Epidemiol. Serviços Saúde 2025, 34, e20240329. [Google Scholar] [CrossRef]
- Santos, C.V.B.D.; Valiati, N.C.M.; Noronha, T.G.; Porto, V.B.G.; Pacheco, A.G.; Freitas, L.P.; Coelho, F.C.; Gomes, M.F.D.C.; Bastos, L.S.; Cruz, O.G.; et al. The effectiveness of COVID-19 vaccines against severe cases and deaths in Brazil from 2021 to 2022: A registry-based study. Lancet Reg. Health—Am. 2023, 20, 100465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavalcante, T.F.; Barboza, W.S.; Martins-Filho, P.R. The vaccination status of COVID-19 hospitalized patients during the Omicron BQ.1.1 wave in Northeast Brazil suggests the need for a fifth booster dose in the elderly, with a time since the last dose of more than 6 months. EXCLI J. 2023, 22, 169–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arbel, R.; Hammerman, A.; Sergienko, R.; Friger, M.; Peretz, A.; Netzer, D.; Yaron, S. BNT162b2 Vaccine Booster and Mortality Due to COVID-19. N. Engl. J. Med. 2021, 385, 2413–2420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Odani, S.; Honda, H.; Tabuchi, T. Association of COVID-19 Vaccine Intake with Diagnosis, Hospitalization, and Oxygenation/Ventilation: A Longitudinal Analysis, 2021–2022, Japan. Vaccines 2024, 12, 1264. [Google Scholar] [CrossRef] [PubMed]
- Inward, R.P.D.; Jackson, F.; Dasgupta, A.; Lee, G.; Battle, A.L.; Parag, K.V.; Kraemer, M.U.G.; Global Health Consortium. Impact of spatiotemporal heterogeneity in COVID-19 disease surveillance on epidemiological parameters and case growth rates. Epidemics 2022, 41, 100627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodrigues, N.C.P.; Teixeira-Netto, J.; Monteiro, D.L.M.; Andrade, M.K.N. Mortality risk of severe acute respiratory syndrome cases classified as COVID-19: A longitudinal study. PLoS ONE 2024, 19, e0309413. [Google Scholar] [CrossRef]
Variable | n | % |
---|---|---|
Sex | ||
Male | 14,835 | 48.59 |
Female | 15,690 | 51.39 |
Ignored | 4 | 0.01 |
Age group | ||
<1 | 65 | 0.21 |
1 to 4 | 3192 | 10.46 |
5 to 9 | 1972 | 6.46 |
10 to 19 | 1016 | 3.33 |
20 to 39 | 2228 | 7.30 |
40 to 59 | 3774 | 12.36 |
60 or more | 18,282 | 59.88 |
Race/Color | ||
Caucasian | 15,813 | 60.20 |
Black | 1058 | 4.03 |
Yellow | 244 | 0.93 |
Brown | 9066 | 34.51 |
Indigenous | 88 | 0.33 |
Ignored = 4260 | ||
Region | ||
North | 1446 | 4.74 |
Northeast | 3192 | 10.46 |
Midwest | 3095 | 10.14 |
Southeast | 16,517 | 54.10 |
South | 6279 | 20.57 |
Comorbidity | ||
Yes | 20,190 | 66.13 |
No | 10,339 | 33.87 |
Clinical progression | ||
Cure | 22,696 | 78.04 |
Death | 5320 | 18.29 |
Death from other causes | 1067 | 3.67 |
Ignored = 1446 | ||
Intensive Care Unit (ICU) | ||
Yes | 9695 | 35.01 |
No | 17,995 | 64.99 |
Ignored = 2839 | ||
Ventilatory support | ||
Yes, invasive | 4081 | 15.22 |
Yes, no invasive | 12,114 | 45.18 |
No | 10,620 | 39.60 |
Ignored = 3714 | ||
Number of vaccine doses (COVID-19) | ||
No doses | 8203 | 26.89 |
One dose | 1168 | 3.83 |
Two doses | 6193 | 20.30 |
Three or more doses | 14,945 | 48.99 |
Time since last vaccine dose | ||
Up to 3 months | 225 | 1.07 |
3 to 6 months | 270 | 1.28 |
7 to 12 months | 3541 | 16.82 |
13 to 24 months | 6425 | 30.52 |
More than 24 months | 10,594 | 50.32 |
Ignored = 9474 |
Variable | Clinical Progression | p-Value * | ICU | p-Value * | Ventilatory Support | p-Value * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cure | Death | No | Yes | No | Yes | ||||||||||
n | % | n | % | n | % | n | % | n | % | n | % | ||||
Sex | <0.0001 | <0.0001 | 0.0008 | ||||||||||||
Male | 6879 | 76.31 | 2135 | 23.69 | 5736 | 61.95 | 3524 | 38.06 | 3275 | 37.14 | 5542 | 62.86 | |||
Female | 8394 | 80.93 | 1978 | 19.07 | 7005 | 66.42 | 3542 | 33.58 | 3944 | 39.52 | 6036 | 60.48 | |||
Age group | <0.0001 | 0.0003 | <0.0001 | ||||||||||||
<5 | 356 | 98.61 | 5 | 1.39 | 232 | 66.29 | 118 | 33.71 | 129 | 38.97 | 202 | 61.03 | |||
5 to 9 | 359 | 98.36 | 6 | 1.64 | 233 | 66.57 | 117 | 33.43 | 123 | 37.61 | 204 | 62.39 | |||
10 to 19 | 372 | 94.66 | 21 | 5.34 | 274 | 68.16 | 128 | 31.84 | 175 | 46.05 | 205 | 53.95 | |||
20 to 39 | 1380 | 90.61 | 143 | 9.39 | 1040 | 67.80 | 494 | 32.20 | 797 | 56.05 | 625 | 43.95 | |||
40 to 59 | 2177 | 81.41 | 497 | 18.59 | 1672 | 61.27 | 1057 | 38.73 | 1094 | 42.65 | 1471 | 57.35 | |||
60 or more | 10,628 | 75.56 | 3437 | 24.44 | 9290 | 64.33 | 5152 | 35.67 | 4901 | 35.59 | 8871 | 64.41 | |||
Region | <0.0001 | <0.0001 | <0.0001 | ||||||||||||
North | 465 | 77.37 | 136 | 22.63 | 428 | 68.48 | 197 | 31.52 | 240 | 41.10 | 344 | 58.90 | |||
Northeast | 1163 | 73.19 | 426 | 26.81 | 1052 | 58.08 | 742 | 41.36 | 671 | 39.03 | 1048 | 60.97 | |||
Midwest | 1571 | 82.25 | 339 | 17.75 | 1147 | 58.08 | 828 | 41.92 | 824 | 45.08 | 1004 | 54.92 | |||
Southeast | 8905 | 79.04 | 2361 | 20.96 | 7206 | 64.04 | 4046 | 35.96 | 3888 | 36.78 | 6682 | 63.22 | |||
South | 3169 | 78.83 | 851 | 21.17 | 2908 | 69.89 | 1253 | 30.11 | 1596 | 38.96 | 2500 | 61.04 | |||
Time since last vaccine dose | <0.0281 | 0.8419 | 0.5807 | ||||||||||||
Up to 24 months | 7725 | 79.43 | 2001 | 20.57 | 6321 | 64.26 | 3516 | 35.74 | 3597 | 38.60 | 5721 | 61.40 | |||
Over 24 months | 7548 | 78.14 | 2112 | 21.86 | 6420 | 64.39 | 3550 | 35.61 | 3622 | 38.21 | 5857 | 61.79 |
Clinical Progression | ICU | Ventilatory Support | ||||
---|---|---|---|---|---|---|
Independent Variables | Prevalence Ratio * | p-Value | Prevalence Ratio ** | p-Value | Prevalence Ratio ** | p-Value |
Sex (Male) | 1.24 (IC95%:1.18;1.30) | <0.0001 | 1.13 (IC95%:1.10;1.17) | <0.0001 | 1.03 (IC95%:1.01;1.05) | 0.0012 |
Age group (<5) | reference | 1.04 (IC95%:0.88;1.22) | 0.6697 | 1.40 (IC95%:1.26;1.55) | <0.0001 | |
Age group (5 to 9) | 1.17 (IC95%:0.35;3.89) | 0.7929 | 1.02 (IC95%:0.82;1.27) | 0.8592 | 1.42 (IC95%:1.27;1.59) | <0.0001 |
Age group (10 to 19) | 3.84 (IC95%:1.52;9.68) | 0.0043 | reference | - | 1.22 (IC95%:1.10;1.35) | 0.0001 |
Age group (20 to 39) | 7.02 (IC95%:3.16;15.59) | <0.0001 | 1.02 (IC95%:0.90;1.15) | 0.8119 | reference | - |
Age group (40 to 59) | 13.73 (IC95%:6.23;30.28) | <0.0001 | 1.21 (IC95%:1.06;1.38) | 0.0037 | 1.30 (IC95%:1.22;1.38) | <0.0001 |
Age group (60 or more) | 18.21 (IC95%:8.30;39.91) | <0.0001 | 1.12 (IC95%:0.99;1.26) | 0.0699 | 1.46 (IC95%:1.38;1.54) | <0.0001 |
Region (Midwest) | reference | - | 1.40 (IC95%:1.32;1.48) | <0.0001 | reference | - |
Region (North) | 1.43 (IC95%:1.21;1.69) | <0.0001 | 1.06 (IC95%:0.96;1.17) | 0.2799 | 1.09 (IC95%:0.99;1.20) | 0.0676 |
Region (Northeast) | 1.56 (IC95%:1.37;1.77) | <0.0001 | 1.39 (IC95%:1.30;1.48) | <0.0001 | 1.11 (IC95%:1.05;1.18) | 0.0005 |
Region (Southeast) | 1.17 (IC95%:1.05;1.29) | 0.0033 | 1.20 (IC95%:1.15;1.25) | <0.0001 | 1.14 (IC95%:1.10;1.19) | <0.0001 |
Region (South) | 1.16 (IC95%:1.05;1.28) | 0.0038 | reference | - | 1.10 (IC95%:1.05;1.16) | <0.0001 |
Time since last vaccine dose (Over 24 months) | 1.08 (IC95%:1.03;1.12) | 0.0005 | 0.99 (IC95%:0.97;1.02) | 0.7056 | 1.03 (IC95%:1.01;1.05) | 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassada, D.S.; Rocha, I.d.L.P.; Coelho, G.; Peratelli, A.C.d.S. Factors Associated with the Clinical Outcome of Severe Acute Respiratory Syndrome Due to COVID-19 in Brazil, 2024. COVID 2025, 5, 172. https://doi.org/10.3390/covid5100172
Kassada DS, Rocha IdLP, Coelho G, Peratelli ACdS. Factors Associated with the Clinical Outcome of Severe Acute Respiratory Syndrome Due to COVID-19 in Brazil, 2024. COVID. 2025; 5(10):172. https://doi.org/10.3390/covid5100172
Chicago/Turabian StyleKassada, Danielle Satie, Igor de Lima Peixoto Rocha, Guilherme Coelho, and Ana Carolina de Souza Peratelli. 2025. "Factors Associated with the Clinical Outcome of Severe Acute Respiratory Syndrome Due to COVID-19 in Brazil, 2024" COVID 5, no. 10: 172. https://doi.org/10.3390/covid5100172
APA StyleKassada, D. S., Rocha, I. d. L. P., Coelho, G., & Peratelli, A. C. d. S. (2025). Factors Associated with the Clinical Outcome of Severe Acute Respiratory Syndrome Due to COVID-19 in Brazil, 2024. COVID, 5(10), 172. https://doi.org/10.3390/covid5100172