Follow-Up on the Recovery of Cardiorespiratory Parameters and Quality of Life in Post-COVID-19 with Hypertension
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.4. Measures
2.4.1. 6-Minute Walk Test (6MWT)
2.4.2. SF-36 Questionnaire
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallo, G.; Calvez, V.; Savoia, C. Hypertension and COVID-19: Current Evidence and Perspectives. High Blood Press. Cardiovasc. Prev. 2022, 29, 115–123. [Google Scholar] [CrossRef]
- Rodilla, E.; López-Carmona, M.D.; Cortes, X.; Cobos-Palacios, L.; Canales, S.; Sáez, M.C.; Campos Escudero, S.; Rubio-Rivas, M.; Díez Manglano, J.; Freire Castro, S.J.; et al. Impact of Arterial Stiffness on All-Cause Mortality in Patients Hospitalized With COVID-19 in Spain. Hypertension 2021, 77, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Safar, M.E.; Asmar, R.; Benetos, A.; Blacher, J.; Boutouyrie, P.; Lacolley, P.; Laurent, S.; London, G.; Pannier, B.; Protogerou, A.; et al. Interaction Between Hypertension and Arterial Stiffness. Hypertension 2018, 72, 796–805. [Google Scholar] [CrossRef]
- Battistoni, A.; Michielon, A.; Marino, G.; Savoia, C. Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment. High Blood Press. Cardiovasc. Prev. 2020, 27, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Savoia, C.; Volpe, M.; Kreutz, R. Hypertension, a Moving Target in COVID-19: Current Views and Perspectives. Circ. Res. 2021, 128, 1062–1079. [Google Scholar] [CrossRef]
- Shibata, S.; Arima, H.; Asayama, K.; Hoshide, S.; Ichihara, A.; Ishimitsu, T.; Kario, K.; Kishi, T.; Mogi, M.; Nishiyama, A.; et al. Hypertension and related diseases in the era of COVID-19: A report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens. Res. 2020, 43, 1028–1046. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, C.; Shibata, S.; Kishi, T.; Morimoto, S.; Mogi, M.; Yamamoto, K.; Kobayashi, K.; Tanaka, M.; Asayama, K.; Yamamoto, E.; et al. Long COVID and hypertension-related disorders: A report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens. Res. 2023, 46, 601–619. [Google Scholar] [CrossRef]
- Sykes, R.A.; Neves, K.B.; Alves-Lopes, R.; Caputo, I.; Fallon, K.; Jamieson, N.B.; Kamdar, A.; Legrini, A.; Leslie, H.; McIntosh, A.; et al. Vascular mechanisms of post-COVID-19 conditions: Rho-kinase is a novel target for therapy. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 371–386. [Google Scholar] [CrossRef]
- Mohandas, S.; Jagannathan, P.; Henrich, T.J.; Sherif, Z.A.; Bime, C.; Quinlan, E.; Portman, M.A.; Gennaro, M.; Rehman, J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023, 12, e86014. [Google Scholar] [CrossRef]
- Mancia, G.; Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef]
- Valensi, P. Autonomic nervous system activity changes in patients with hypertension and overweight: Role and therapeutic implications. Cardiovasc. Diabetol. 2021, 20, 170. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef] [PubMed]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.V.C.; Meys, R.; Delbressine, J.M.; Vaes, A.W.; Goërtz, Y.M.J.; van Herck, M.; Houben-Wilke, S.; Boon, G.; Barco, S.; Burtin, C.; et al. Construct validity of the Post-COVID-19 Functional Status Scale in adult subjects with COVID-19. Health Qual. Life Outcomes 2021, 19, 40. [Google Scholar] [CrossRef]
- Cunha, E.F.D.; Silveira, M.S.; Milan-Mattos, J.C.; Cavalini, H.F.S.; Ferreira, Á.A.; Batista, J.d.S.; Uzumaki, L.C.; Guimarães, J.P.C.; Roriz, P.I.L.; Dantas, F.M.d.N.A.; et al. Cardiac Autonomic Function and Functional Capacity in Post-COVID-19 Individuals with Systemic Arterial Hypertension. J. Pers. Med. 2023, 13, 1391. [Google Scholar] [CrossRef]
- Melo, R.C.; Quitério, R.J.; Takahashi, A.C.; Silva, E.; Martins, L.E.; Catai, A.M. High eccentric strength training reduces heart rate variability in healthy older men. Br. J. Sports Med. 2008, 42, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.H.; Bolina, A.F.; Luiz, R.B.; de Oliveira, K.F.; Virtuoso, J.S., Jr.; Rodrigues, R.A.; Silva, L.C.; da Cunha, D.F.; De Mattia, A.L.; Barichello, E. Body mass index as discriminator of the lean mass deficit and excess body fat in institutionalized elderly people. Geriatr. Nurs. 2015, 36, 202–206. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Bellet, R.N.; Adams, L.; Morris, N.R. The 6-minute walk test in outpatient cardiac rehabilitation: Validity, reliability and responsiveness—A systematic review. Physiotherapy 2012, 98, 277–286. [Google Scholar] [CrossRef]
- Nandasena, H.; Pathirathna, M.L.; Atapattu, A.; Prasanga, P.T.S. Quality of life of COVID 19 patients after discharge: Systematic review. PLoS ONE 2022, 17, e0263941. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int. J. Rehabil. Res. 2008, 31, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Manzano, R.M.; Heubel, A.D.; Tanni, S.E. Effects of exercise-based pulmonary rehabilitation on lung function, muscle strength and functional capacity in post-COVID-19 patients. Sport Sci. Health 2024, 20, 675–682. [Google Scholar] [CrossRef]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108–2021. [Google Scholar] [CrossRef]
- Peroy-Badal, R.; Sevillano-Castaño, A.; Torres-Castro, R.; García-Fernández, P.; Maté-Muñoz, J.L.; Dumitrana, C.; Sánchez Rodriguez, E.; de Frutos Lobo, M.J.; Vilaró, J. Comparison of different field tests to assess the physical capacity of post-COVID-19 patients. Pulmonology 2024, 30, 17–23. [Google Scholar] [CrossRef]
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International Task Force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- Wong, A.W.; López-Romero, S.; Figueroa-Hurtado, E.; Vazquez-Lopez, S.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A.; Cortés-Telles, A. Predictors of reduced 6-minute walk distance after COVID-19: A cohort study in Mexico. Pulmonology 2021, 27, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Líška, D.; Liptaková, E.; Babičová, A.; Batalik, L.; Baňárová, P.S.; Dobrodenková, S. What is the quality of life in patients with long COVID compared to a healthy control group? Front. Public Health 2022, 10, 975992. [Google Scholar] [CrossRef]
- Lemhöfer, C.; Sturm, C.; Loudovici-Krug, D.; Best, N.; Gutenbrunner, C. The impact of Post-COVID-Syndrome on functioning—Results from a community survey in patients after mild and moderate SARS-CoV-2-infections in Germany. J. Occup. Med. Toxicol. 2021, 16, 45. [Google Scholar] [CrossRef]
- de Sousa, K.C.A.; Gardel, D.G.; Lopes, A.J. Postural balance and its association with functionality and quality of life in non-hospitalized patients with post-acute COVID-19 syndrome. Physiother. Res. Int. 2022, 27, e1967. [Google Scholar] [CrossRef]
- Malik, P.; Patel, K.; Pinto, C.; Jaiswal, R.; Tirupathi, R.; Pillai, S.; Patel, U. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—A systematic review and meta-analysis. J. Med. Virol. 2022, 94, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Redfern, M.S. Psychological factors influencing recovery from balance disorders. J. Anxiety Disord. 2001, 15, 107–119. [Google Scholar] [CrossRef] [PubMed]
Variables | Non-COVID-19 (n = 30; F = 23; M = 7) | Post-COVID-19 (n = 30; F = 24; M = 6) | p-Value |
---|---|---|---|
Age (years) | 58.77 ± 6.35 | 58.07 ± 7.91 | 0.707 |
Weight (kg) | 52.27 ± 4.93 | 50.43 ± 6.33 | 0.216 |
Height (m) | 1.55 ± 0.07 | 1.55 ± 0.08 | 0.932 |
BMI (kg/m2) | 21.77 ± 1.41 | 21.00 ± 1.50 | 0.616 |
Duration of recovery from COVID-19 (months) | - | 1.07 | - |
Variables | Baseline | 3 Months | p-Value Within Group |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Post-HR (bpm) | |||
Non-COVID-19 | 103.30 ± 7.96 | 102.20 ± 5.46 | 0.549 |
Post-COVID-19 | 113.23 ± 7.93 | 104.33 ± 6.24 | <0.001 |
p-value between groups | <0.001 | 0.164 | |
Post-SBP (mmHg) | |||
Non-COVID-19 | 135.60 ± 5.61 | 136.53 ± 7.89 | 0.584 |
Post-COVID-19 | 143.50 ± 10.70 | 137.17 ± 9.33 | 0.041 |
p-value between groups | 0.001 | 0.777 | |
Post-DBP (mmHg) | |||
Non-COVID-19 | 78.57 ± 7.96 | 78.36 ± 5.01 | 0.898 |
Post-COVID-19 | 79.03 ± 7.82 | 78.77 ± 6.46 | 0.863 |
p-value between groups | 0.820 | 0.790 | |
Post-SpO2 (%) | |||
Non-COVID-19 | 97.37 ± 0.49 | 97.53 ± 0.51 | 0.169 |
Post-COVID-19 | 96.63 ± 0.76 | 97.23 ± 0.58 | 0.008 |
p-value between groups | <0.001 | 0.093 | |
Post-RPE | |||
Non-COVID-19 | 10.70 ± 0.99 | 10.43 ± 1.48 | 0.842 |
Post-COVID-19 | 12.27 ± 1.57 | 10.90 ± 1.27 | <0.001 |
p-value between groups | <0.001 | 0.195 | |
Post-leg fatigue | |||
Non-COVID-19 | 1.77 ± 0.76 | 1.78 ± 0.78 | 0.940 |
Post-COVID-19 | 3.23 ± 1.04 | 1.80 ± 0.75 | <0.001 |
p-value between groups | <0.001 | 0.933 | |
Distance (m) | |||
Non-COVID-19 | 401.57 ± 12.27 | 403.27 ± 11.27 | 0.615 |
Post-COVID-19 | 387.23 ± 20.75 | 400.20 ± 20.75 | 0.010 |
p-value between groups | 0.002 | 0.338 |
Variables | Baseline | 3 Months | p-Value Within Group |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Physical function | |||
Non-COVID-19 | 73.33 ± 11.24 | 74.67 ± 10.08 | 0.161 |
Post-COVID-19 | 62.00 ± 6.10 | 72.00 ± 7.14 | <0.001 |
p-value between groups | <0.001 | 0.242 | |
Physical role limitations | |||
Non-COVID-19 | 74.83 ± 7.70 | 75.10 ± 9.25 | 0.712 |
Post-COVID-19 | 62.93 ± 5.61 | 73.13 ± 95.38 | < 0.001 |
p-value between groups | <0.001 | 0.326 | |
Bodily pain | |||
Non-COVID-19 | 60.80 ± 13.13 | 61.47 ± 12.53 | 0.326 |
Post-COVID-19 | 53.33 ± 13.73 | 59.33 ± 13.63 | 0.004 |
p-value between groups | 0.035 | 0.530 | |
General health perceptions | |||
Non-COVID-19 | 69.67 ± 10.66 | 70.33 ± 10.33 | 0.169 |
Post-COVID-19 | 56.67 ± 8.84 | 68.33 ± 8.74 | 0.008 |
p-value between groups | <0.001 | 0.422 | |
Vitality | |||
Non-COVID-19 | 69.67 ± 9.99 | 70.33 ± 10.33 | 0.161 |
Post-COVID-19 | 58.33 ± 9.13 | 68.67 ± 7.30 | <0.001 |
p-value between groups | <0.001 | 0.195 | |
Social functioning | |||
Non-COVID-19 | 68.57 ± 6.27 | 70.50 ± 9.36 | 0.169 |
Post-COVID-19 | 59.30 ± 7.41 | 69.83 ± 10.68 | <0.001 |
p-value between groups | <0.001 | 0.351 | |
Emotional role limitation | |||
Non-COVID-19 | 87.67 ± 7.74 | 88.33 ± 6.99 | 0.423 |
Post-COVID-19 | 70.67 ± 9.44 | 86.67 ± 9.59 | < 0.001 |
p-value between groups | <0.001 | 0.445 | |
Mental health | |||
Non-COVID-19 | 84.33 ± 6.26 | 85.00 ± 5.09 | 0.662 |
Post-COVID-19 | 71.50 ± 10.43 | 84.00 ± 6.21 | <0.001 |
p-value between groups | <0.001 | 0.498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amput, P.; Poncumhak, P.; Wongphon, S.; Konsanit, S.; Phrompao, P. Follow-Up on the Recovery of Cardiorespiratory Parameters and Quality of Life in Post-COVID-19 with Hypertension. COVID 2025, 5, 161. https://doi.org/10.3390/covid5100161
Amput P, Poncumhak P, Wongphon S, Konsanit S, Phrompao P. Follow-Up on the Recovery of Cardiorespiratory Parameters and Quality of Life in Post-COVID-19 with Hypertension. COVID. 2025; 5(10):161. https://doi.org/10.3390/covid5100161
Chicago/Turabian StyleAmput, Patchareeya, Puttipong Poncumhak, Sirima Wongphon, Saisunee Konsanit, and Patcharin Phrompao. 2025. "Follow-Up on the Recovery of Cardiorespiratory Parameters and Quality of Life in Post-COVID-19 with Hypertension" COVID 5, no. 10: 161. https://doi.org/10.3390/covid5100161
APA StyleAmput, P., Poncumhak, P., Wongphon, S., Konsanit, S., & Phrompao, P. (2025). Follow-Up on the Recovery of Cardiorespiratory Parameters and Quality of Life in Post-COVID-19 with Hypertension. COVID, 5(10), 161. https://doi.org/10.3390/covid5100161