Kidney and Liver Predictors of Adults Hospitalized with COVID-19 Infection
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Inclusion Criteria
- (1)
- Age > 18 years.
- (2)
- COVID-19 positive in real-time PCR assay.
- (3)
- Hospitalized in COVID-19 internal medicine department.
2.3. Exclusion Criteria
- (1)
- Pregnant woman.
2.4. Data Collection
2.5. Laboratory Measurements
2.6. Definitions
2.7. Ethics
2.8. Outcomes
2.9. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Correlation between Risk Factors and Mortality in COVID-19 Patients
3.3. Correlation between LFTS and Mortality in COVID-19 Patients
3.4. Correlation between Liver Function Tests and Severity in COVID-19 Patients according to 4c Score
3.5. Correlation between Kidney Function Tests and Severity in COVID-19 Patients according to the 4c Score
3.6. Multivariate Stepwise Regression Analysis including Liver and Kidney Functions Tests
3.7. Diagnostic Accuracy of the Predictors in COVID-19 Pneumonia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wei, M.; Yang, N.; Wang, F.; Zhao, G.; Gao, H.; Li, Y. Epidemiology of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2. Disaster Med. Public Health Prep. 2020, 14, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Rico-Mesa, J.S.; White, A.; Anderson, A.S. Outcomes in Patients with COVID-19 Infection Taking ACEI/ARB. Curr. Cardiol. Rep. 2020, 22, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Liu, H.; Li, W.; Lin, F.; Jiang, L.; Li, X.; Xu, P.; Zhang, L.; Zhao, L.; et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 2020, 73, 807–816. [Google Scholar] [CrossRef]
- Cardoso, F.S.; Pereira, R.; Germano, N. Liver injury in critically ill patients with COVID-19: A case series. Crit. Care 2020, 24, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, B. Clinical Characteristics of COVID-19 in Patients with Liver Injury. Clin. Gastroenterol. Hepatol. 2020, 18, 2846–2847. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin. Gastroenterol. Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Lu, M.; Yang, D.; Zheng, X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020, 40, 998–1004. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, F.Y.; Wei, L.; Cheng, Q.L. Clinical analysis of kidney injury in patients with COVID-19. Zhonghua Yi Xue Za Zhi 2020, 100, E022. [Google Scholar] [CrossRef]
- Fanelli, V.; Fiorentino, M.; Cantaluppi, V.; Gesualdo, L.; Stallone, G.; Ronco, C.; Castellano, G. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care 2020, 24, 155. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; den Deurwaarder, E.S.G.; Bakker, S.J.L.; de Haas, R.J.; van Meurs, M.; Gansevoort, R.T.; Berger, S.P. Kidney Infarction in Patients With COVID-19. Am. J. Kidney Dis. 2020, 76, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yang, M.; Wan, C.; Yi, L.-X.; Tang, F.; Zhu, H.-Y.; Yi, F.; Yang, H.-C.; Fogo, A.B.; Nie, X.; et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Qiao, L.; Wang, W.; Chen, D. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients with Coronavirus Disease 2019 (COVID-19). Ann. Intern. Med. 2020, 173, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Hesary, F.; Akbari, H. The powerful immune system against powerful COVID-19: A hypothesis. Med. Hypotheses 2020, 140, 109762. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl. Sci. Rev. 2020, 7, 998–1002. [Google Scholar] [CrossRef]
- Olry, A.; Meunier, L.; Délire, B.; Larrey, D.; Horsmans, Y.; Le Louët, H. Drug-Induced Liver Injury and COVID-19 Infection: The Rules Remain the Same. Drug Saf. 2020, 43, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Muhović, D.; Bojović, J.; Bulatović, A.; Vukčević, B.; Ratković, M.; Lazović, R.; Smolović, B. First case of drug-induced liver injury associated with the use of tocilizumab in a patient with COVID-19. Liver Int. 2020, 40, 1901–1905. [Google Scholar] [CrossRef]
- Sise, M.E.; Baggett, M.V.; Shepard, J.-A.O.; Stevens, J.S.; Rhee, E.P. Case 17-2020: A 68-Year-Old Man with COVID-19 and Acute Kidney Injury. N. Engl. J. Med. 2020, 382, 2147–2156. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef]
- Rismanbaf, A.; Zarei, S. Liver and Kidney Injuries in COVID-19 and Their Effects on Drug Therapy; a Letter to Editor. Arch. Acad. Emerg. Med. 2020, 8, e17. [Google Scholar]
- Hassanein, M.; Thomas, G.; Taliercio, J. Management of acute kidney injury in COVID-19. Clevel. Clin. J. Med. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Rabb, H. Kidney diseases in the time of COVID-19: Major challenges to patient care. J. Clin. Investig. 2020, 130, 2749–2751. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Su, T.-H.; Kao, J.-H. The clinical manifestations and management of COVID-19-related liver injury. J. Formos. Med Assoc. 2020, 119, 1016–1018. [Google Scholar] [CrossRef]
- Barros Camargo, L.; Quintero Marzola, I.D.; Cárdenas Gómez, J.C.; Mendoza Daza, L.T.; Quintana Pájaro, L. Acute kidney injury associated with COVID-19: Another extrapulmonary manifestation. Int. Urol. Nephrol. 2020, 52, 1403–1404. [Google Scholar] [CrossRef] [PubMed]
- Basheer, M.; Saad, E.; Hagai, R.; Assy, N. Clinical Predictors of Mortality and Critical Illness in Patients with COVID-19 Pneumonia. Metabolites 2021, 11, 679. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, J.-G. Characteristics and Mechanism of Liver Injury in 2019 Coronavirus Disease. J. Clin. Transl. Hepatol. 2020, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Staico, M.F.; Zaffanello, M.; Di Pietro, G.; Fanos, V.; Marcialis, M.A. The kidney in COVID-19: Protagonist or figurant? Panminerva Med. 2020, 65, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, S. Blood Urea Nitrogen/Albumin Ratio and Mortality Risk in Patients with COVID-19. Indian J. Crit. Care Med. 2022, 26, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.J.; Govindarajan, P.; Bennett, C.L.; Matheson, L.; A Kohn, M.; Camargo, C.; Kline, J. External validation of the 4C Mortality Score for hospitalised patients with COVID-19 in the RECOVER network. BMJ Open 2022, 12, e054700. [Google Scholar] [CrossRef]
- Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 2020, 17, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M. Acute Kidney Injury in SARS-CoV-2 Infection: Direct Effect of Virus on Kidney Proximal Tubule Cells. Int. J. Mol. Sci. 2020, 21, 3275. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Cai, J.; Lei, F.; Qin, J.-J.; Xie, J.; Liu, Y.-M.; Zhao, Y.-C.; Huang, X.; Lin, L.; et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ. Res. 2020, 126, 1671–1681. [Google Scholar] [CrossRef]
- Thum, T. SARS-CoV-2 receptor ACE2 expression in the human heart: Cause of a post-pandemic wave of heart failure? Eur. Heart J. 2020, 41, 1807–1809. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Liang, W.-H.; Zhao, Y.; Liang, H.-R.; Chen, Z.-S.; Li, Y.-M.; Liu, X.-Q.; Chen, R.-C.; Tang, C.-L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, J.; Lian, N.; Lin, S.; Xie, Q.; Zhuo, H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: A retrospective study. Liver Int. 2020, 40, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, L.; Liu, L.; Zhao, M.; Xiao, J.; Zhao, Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int. 2020, 40, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.A.; Oratz, M.; Schreiber, S.S. Serum albumin. J. Hepatol. 1988, 8, 385–401. [Google Scholar] [CrossRef]
- Nazha, B.; Moussaly, E.; Zaarour, M.; Weerasinghe, C.; Azab, B. Hypoalbuminemia in colorectal cancer prognosis: Nutritional marker or inflammatory surrogate? World J. Gastrointest. Surg. 2015, 7, 370–377. [Google Scholar] [CrossRef]
- Anderson, C.F.; Wochos, D.N. The utility of serum albumin values in the nutritional assessment of hospitalized patients. Mayo Clin. Proc. 1982, 57, 181–184. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J. Med. Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef]
- Veering, B.; Burm, A.; Souverijn, J.; Serree, J.; Spierdijk, J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br. J. Clin. Pharmacol. 1990, 29, 201–206. [Google Scholar] [CrossRef]
- Paces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the Immune System. Physiol. Res. 2020, 69, 379–388. [Google Scholar] [CrossRef]
- Anka, A.U.; Tahir, M.I.; Abubakar, S.D.; Alsabbagh, M.; Zian, Z.; Hamedifar, H.; Sabzevari, A.; Azizi, G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand. J. Immunol. 2021, 93, e12998. [Google Scholar] [CrossRef] [PubMed]
- Parasher, A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad. Med. J. 2020, 97, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; He, W.; Liang, J.; Wang, L.; Yu, X.; Bao, M.; Liu, H. Association of Interleukin-6 Levels with Morbidity and Mortality in Patients with Coronavirus Disease 2019 (COVID-19). Jpn. J. Infect. Dis. 2021, 74, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Avila-Nava, A.; Cortes-Telles, A.; Torres-Erazo, D.; López-Romero, S.; Chim, A.k.é.R.; Gutiérrez Solis, A.L. Serum IL-6: A potential biomarker of mortality among SARS-CoV-2 infected patients in Mexico. Cytokine 2021, 143, 155543. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Guirao, J.J.; Cabrera, C.M.; Jiménez, N.; Rincón, L.; Urra, J.M. High serum IL-6 values increase the risk of mortality and the severity of pneumonia in patients diagnosed with COVID-19. Mol. Immunol. 2020, 128, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Salinas, L.; Verdugo-Rodriguez, A.; Rodriguez, L.L.; Borca, M.V. The Role of Interleukin 6 During Viral Infections. Front. Microbiol. 2019, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016, 8, 959–970. [Google Scholar] [CrossRef]
- Dienz, O.; Rud, J.G.; Eaton, S.M.; A Lanthier, P.; Burg, E.; Drew, A.; Bunn, J.; Suratt, B.T.; Haynes, L.; Rincon, M. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol. 2012, 5, 258–266. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res. 2018, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef] [PubMed]
- REMAP-CAP Investigators; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol. 2020, 92, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.H.; Hoots, W.K. The scoring system of the Scientific and Standardisation Committee on Disseminated Intravascular Coagulation of the International Society on Thrombosis and Haemostasis: A 5-year overview. J. Thromb. Haemost. 2007, 5, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Yang, L.; Liu, R.; Liu, F.; Wu, K.L.; Li, J.; Liu, X.H.; Zhu, C.L. Prominent Changes in Blood Coagulation of Patients with SARS-CoV-2 Infection. Clin. Chem. Lab. Med. 2020, 58, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef]
- Sui, J.; Noubouossie, D.F.; Gandotra, S.; Cao, L. Elevated Plasma Fibrinogen Is Associated with Excessive Inflammation and Disease Severity in COVID-19 Patients. Front. Cell. Infect. Microbiol. 2021, 11, 734005. [Google Scholar] [CrossRef]
- Demelo-Rodríguez, P.; Cervilla-Muñoz, E.; Ordieres-Ortega, L.; Parra-Virto, A.; Toledano-Macías, M.; Toledo-Samaniego, N.; García-García, A.; García-Fernández-Bravo, I.; Ji, Z.; De-Miguel-Diez, J.; et al. Incidence of Asymptomatic Deep Vein Thrombosis in Patients With COVID-19 Pneumonia and Elevated D-dimer Levels. Thromb. Res. 2020, 192, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020, 127, 104362. [Google Scholar] [CrossRef] [PubMed]
- Stouthard, J.M.L.; Levi, M.; Hack, C.E.; Veenhof, C.H.N.; A Romijn, H.; Sauerwein, H.P.; van der Poll, T. Interleukin-6 Stimulates Coagulation, not Fibrinolysis, in Humans. Arthritis Res. Ther. 1996, 76, 738–742. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for COVID19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal liver function tests. J. Hepatol. 2020, 73, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Chen, B.; Wang, Y.; Yang, Y.; Zeng, J.; Deng, G.; Deng, Y.; Zeng, F. Prognostic value of liver biochemical parameters for COVID-19 mortality. Ann. Hepatol. 2020, 21, 100279. [Google Scholar] [CrossRef]
- Phipps, M.M.; Barraza, L.H.; Lasota, E.D.; Sobieszczyk, M.E.; Pereira, M.R.; Zheng, E.X.; Fox, A.N.; Zucker, J.; Verna, E.C. Acute Liver Injury in COVID-19: Prevalence and Association with Clinical Outcomes in a Large U.S. Cohort. Hepatology 2020, 72, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Mendizabal, M.; Piñero, F.; Ridruejo, E.; Anders, M.; Silveyra, M.D.; Torre, A.; Montes, P.; Urzúa, A.; Pages, J.; Toro, L.G.; et al. Prospective Latin American cohort evaluating outcomes of patients with COVID-19 and abnormal liver tests on admission. Ann. Hepatol. 2021, 21, 100298. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 28, 1054–1062. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, L.; Wang, F.-S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Yu, J.; Ma, T. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Mod. Pathol. 2020, 100, 794–800. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Remdesivir EUA Letter of Authorization. 2020. Available online: www.fda.gov/media/137564/download (accessed on 22 October 2021).
- U.S. Food and Drug Administration. FDA Approves First Treatment for COVID-19. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on 22 October 2021).
- Fu, A.; Nair, K.S. Age effect on fibrinogen and albumin synthesis in humans. Am. J. Physiol. -Endocrinol. Metab. 1998, 275, E1023–E1030. [Google Scholar] [CrossRef] [PubMed]
- Young, J.H.; Klag, M.J.; Muntner, P.; Whyte, J.L.; Pahor, M.; Coresh, J. Blood pressure and decline in kidney function: Findings from the Systolic Hypertension in the Elderly Program (SHEP). J. Am. Soc. Nephrol. 2002, 13, 2776–2782. [Google Scholar] [CrossRef]
- Kussman, M.J.; Goldstein, H.H.; Gleason, R.E. The Clinical Course of Diabetic Nephropathy. JAMA 1976, 236, 1861–1863. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, A.D.; Teumer, A.; Witte, D.R.; Stanzick, K.-J.; Winkler, T.W.; Burgess, S.; Ellervik, C. Obesity and Kidney Function: A Two-Sample Mendelian Randomization Study. Clin. Chem. 2021, 68, 461–472. [Google Scholar] [CrossRef]
- Zhong, J.-B.; Yao, Y.-F.; Zeng, G.-Q.; Zhang, Y.; Ye, B.-K.; Dou, X.-Y.; Cai, L. A closer association between blood urea nitrogen and the probability of diabetic retinopathy in patients with shorter type 2 diabetes duration. Sci. Rep. 2023, 13, 9881. [Google Scholar] [CrossRef]
Variable | Survivors | Non-Survivors | p-Value |
---|---|---|---|
Total | N = 318 | N = 74 | |
Age | 58 ± 18 | 78 ± 12 | 0.001 |
Male (%) | 0.47 | 0.6 | 600 |
Ethnicity % (Arab/Jewish) | (65/35) | (40/60) | 0.004 |
BMI | 29 ± 6 | 32 ± 11 | 0.008 |
Comorbidities % | |||
Diabetes (%) | 30 | 57 | 0.001 |
Hypertension (%) | 48 | 84 | 0.001 |
Lung disease (%) | 9 | 18 | 0.03 |
Hemodialysis (%) | 5 | 15 | 0.003 |
Aspirin use (%) | 30 | 61 | 0.001 |
Symptom’s duration before admission to hospitals | 6 ± 5 | 9 ± 12 | 0.19 |
Fever % | 57 | 56 | 0.77 |
Diarrhea % | 6 | 2 | 0.26 |
Dyspnea % | 59 | 59 | 0.74 |
Clinical severity on admission % | 30 | 54 | 0.001 |
Lab Findings upon admission | |||
Hemoglobin (mg/dl) | 13 ± 3 | 12 ± 1.2 | 0.06 |
Absolute neutrophil count (×103/µL) | 13 ± 9 | 13 ± 6 | 0.9 |
Absolute lymphocyte count (×103/µL) | 2.06 ± 11 | 1.4 ± 4 | 0.001 |
Neutrophil to lymphocyte ratio (NLR) | 7.01 ± 3 | 9.1 ± 0.8 | 0.001 |
Platelet (×103/µL) | 220± 86 | 220 ± 90 | 0.79 |
BUN (mg/dl) | 19 ± 14 | 40 ± 27 | 0.001 |
Creatinine (mg/dl) | 2 ± 8 | 2.2 ± 2 | 0.7 |
Triglycerides (mg/dl) | 145 ± 148 | 157 ± 48 | 0.08 |
HDL (mg/dl) | 33 ± 12 | 30 ± 13 | 0.09 |
Insulin Resistance (TG/HDL) | 5.4 ± 5.8 | 6.1 ± 5.0 | 0.02 |
C-reactive protein (CRP) (mg/dl) | 68 ± 78 | 109 ± 97 | 0.001 |
Ferritin | 632 ± 987 | 1041 ± 3594 | 0.57 |
D-dimer | 1664 ± 3513 | 2539 ± 3374 | 0.001 |
Fibrinogen | 641 ± 183 | 660 ± 180 | 0.33 |
IL-6 | 34 ± 52 | 264 ± 111 | 0.001 |
ALT | 23 ± 21 | 37 ± 51 | 0.001 |
AST | 40.6 ± 34.32 | 37.9 ± 23.1 | ??? |
Albumin | 3.8 ± 0.6 | 3.4 ± 0.4 | ??? |
Cytokine storm (% of total) | 25 | 51 | 0.001 |
4-C score | 8 ± 20 | 12 ± 3 | 0.001 |
SOFA score | 1.3 ± 1.4 | 2.7 ± 2.2 | 0.001 |
O2 supplement on admission % | 55 | 100 | 0.001 |
High flow use (% of total) | 14 | 82 | 0.001 |
Mechanical ventilation (% of total) | 2 | 46 | 0.001 |
ARDS (% of total) | 17 | 34 | 0.006 |
O2 supply at day 7 (% of total) | 18 | 99 | 0.001 |
Hospitalization length | 9.5 ± 10 | 17.2 ± 13 | 0.001 |
Time to negative PCR | 17 ± 8 | 20 ± 8 | 0.16 |
Treatment in hospitalization | |||
Steroid therapy (% of total) | 93 | 97 | 0.26 |
Methylprednisolone | 86 | 90 | 0.75 |
Dexamethasone | 14 | 10 | 0.75 |
LMWH (% of total) | 96 | 99 | 0.34 |
Remdesivir (% of total) | 12 | 19 | 0.21 |
Vitamin D (% of total) | 97 | 97 | 0.9 |
A—Constant | Coefficient | Conf. (±) | Std. Error | T | p-Value |
Age | 0.006 | 0.0002 | 0.001 | 5.43 | 1.07 × 10−7 |
Gender | −0.049 | 0.071 | 0.036 | −1.36 | 0.17 |
Ethnicity | −0.047 | 0.071 | 0.03 | −1.23 | 0.21 |
BMI | 0.006 | 0.005 | 0.002 | 2.23 | 0.02 |
DM | 0.047 | 0.088 | 0.044 | 1.5 | 0.29 |
HTN | −0.024 | 0.094 | 0.048 | −0.5 | 0.69 |
Hemodialysis | 0.16 | 0.14 | 0.071 | 2.24 | 0.025 |
Lung Diseaase | 0.05 | 0.116 | 0.052 | 0.86 | 0.38 |
B—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
Age | 0.007 | 0.0019 | 0.001 | 7.7 | 1.45 × 10−13 |
BMI | 0.006 | 0.05 | 0.0025 | 2.34 | 0.0195 |
HEmodialysis | 0.176 | 0.137 | 0.0696 | 2.53 | 0.01166 |
A—Constant | Coefficient | Conf. (±) | Std. Error | T | p-Value |
Fibrinogen | 0.996 | 0.519 | 0.263 | 3.782 | 0.0002 |
INR | −0.00001 | 0.0003 | 0.0001 | −0.0752 | 0.94 |
Ferritin | −0.007 | 0.109 | 0.055 | −0.128 | 0.898 |
IL-6 | 0.000017 | 0.00002 | 0.00001 | 1.249 | 0.212 |
ALB | 0.00003 | 0.00005 | 0.00002 | 1.158 | 0.248 |
AST | −0.1933 | 0.114 | 0.0578 | −3.338 | 0.001 |
ALT | −0.00032 | 0.0034 | 0.0017 | −0.188 | 0.85 |
B—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
ALB | −0.2136 | 0.1097 | 0.0556 | −3.84 | 0.00016 |
A—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
Fibrinogen | 0.0003 | 0.00035 | 0.00018 | 1.9778 | 0.0493 |
INR | −0.0063 | 0.1256 | 0.0637 | −0.0997 | 0.9206 |
Ferritin | 0.000007 | 0.00003 | 0.00001 | 0.4791 | 0.6323 |
IL-6 | −0.00003 | 0.00006 | 0.00003 | −1.0135 | 0.312 |
ALB | −0.0417 | 0.1313 | 0.0666 | −0.6259 | 0.532 |
AST | 0.0055 | 0.004 | 0.002 | 2.7437 | 0.0066 |
ALT | −0.002 | 0.0027 | 0.0014 | −1.4586 | 0.1462 |
B—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
Fibrinogen | 0.0004 | 0.0003 | 0.00017 | 2.3752 | 0.01845 |
AST | 0.0035 | 0.00236 | 0.00119 | 2.9781 | 0.00324 |
A—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
BUN | 0.0085 | 0.002 | 0.001 | 8.0352 | 1.1822 × 10−14 |
Creatinine | −0.0034 | 0.0049 | 0.0025 | −1.3707 | 0.1712 |
GFR | −0.00059 | 0.00073 | 0.00037 | −1.5942 | 0.1117 |
B—Constant | Coefficient | Conf. (±) | Std. Error | T | p |
BUN | 0.009089 | 0.00186 | 0.00095 | 9.5654 | 1.4013 × 10−19 |
Constant | Coefficient | Conf. (±) | Std. Error | T | p |
---|---|---|---|---|---|
IL-6 | 0.0001 | 0.00009 | 0.00004 | 2.1474 | 0.03312 |
ALB | −0.1297 | 0.1074 | 0.05442 | −2.3838 | 0.01819 |
BUN | 0.0085 | 0.0033 | 0.00167 | 5.0738 | 9.83908 × 10−7 |
A | Actual Count | 0—Survivors | 1—Non-Survivors |
---|---|---|---|
Survivor (0) | 175 | 148 | 27 |
Non-survivor(1) | 53 | 19 | 34 |
B | |||
Sensitivity | 88% | ||
Specificity | 55% | ||
Positive Predictive Value | 84% | ||
Negative Predictive Value | 64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulos, M.; Sbeit, M.; Basheer, M.; Ben Arie, G.; Mirkin, Y.; Assy, N. Kidney and Liver Predictors of Adults Hospitalized with COVID-19 Infection. COVID 2024, 4, 452-465. https://doi.org/10.3390/covid4040030
Boulos M, Sbeit M, Basheer M, Ben Arie G, Mirkin Y, Assy N. Kidney and Liver Predictors of Adults Hospitalized with COVID-19 Infection. COVID. 2024; 4(4):452-465. https://doi.org/10.3390/covid4040030
Chicago/Turabian StyleBoulos, Mariana, Moeen Sbeit, Maamoun Basheer, Guy Ben Arie, Yuval Mirkin, and Nimer Assy. 2024. "Kidney and Liver Predictors of Adults Hospitalized with COVID-19 Infection" COVID 4, no. 4: 452-465. https://doi.org/10.3390/covid4040030
APA StyleBoulos, M., Sbeit, M., Basheer, M., Ben Arie, G., Mirkin, Y., & Assy, N. (2024). Kidney and Liver Predictors of Adults Hospitalized with COVID-19 Infection. COVID, 4(4), 452-465. https://doi.org/10.3390/covid4040030