Correlation of Surface Tension of Mono-Solvents at Various Temperatures
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.C.; Simamora, P.; Pinsuwan, S.; Yalkowsky, S.H. Review on the systemic delivery of insulin via the ocular route. Int. J. Pharm. 2002, 233, 1–18. [Google Scholar] [CrossRef]
- Khattab, I.S.; Bandarkar, F.; Fakhree, M.A.A.; Jouyban, A. Density, viscosity, and surface tension of water+ ethanol mixtures from 293 to 323K. Korean J. Chem. Eng. 2012, 29, 812–817. [Google Scholar] [CrossRef]
- Fathi Azarbayjani, A.; Jouyban, A.; Chan, S.Y. Impact of surface tension in pharmaceutical sciences. J. Pharm. Pharm. Sci. 2009, 12, 218–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi-Azarbayjani, A.; Jouyban, A. Surface tension in human pathophysiology and its application as a medical diagnostic tool. Bioimpacts 2015, 5, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Jouyban, A.; Fathi Azarbayjani, A. Experimental and computational methods pertaining to surface tension of pharmaceutical. In Toxicity and Drug Testing; Acree, W.E., Jr., Ed.; IntechOpen: London, UK, 2012; pp. 47–70. [Google Scholar]
- Khoubnasabjafari, M.; Jouyban, V.; Azarbayjani, A.F.; Jouyban, A. Application of Abraham solvation parameters for surface tension prediction of mono-solvents and solvent mixtures at various temperatures. J. Mol. Liq. 2013, 178, 44–56. [Google Scholar] [CrossRef]
- Lee, G.; Che, M.; Qian, E.; Wang, L.; Gupta, A.; Neal, R.; Yue, D.; Downs, S.; Mayes, T.; Rose, O. Determination of Abraham model solute descriptors for o-acetoacetanisidide based on experimental solubility data in organic mono-solvents. Phys. Chem. Liq. 2019, 57, 528–535. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press: New York, NY, USA, 1998. [Google Scholar]
- Catalán, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Calvo, E.; Pintos, M.; Amigo, A.; Bravo, R. Thermodynamic analysis of surface formation of {1,4-dioxane + 1-alkanol} mixtures. J. Colloid Interface Sci. 2002, 253, 203–210. [Google Scholar] [CrossRef]
- Vijande, J.; Pineiro, M.M.; García, J.; Valencia, J.L.; Legido, J.L. Density and surface tension variation with temperature for heptane + 1-alkanol. J. Chem. Eng. Data 2006, 51, 1778–1782. [Google Scholar] [CrossRef]
- Segade, L.; Jiménez de Llano, J.; Domínguez-Pérez, M.; Cabeza, Ó.; Cabanas, M.; Jiménez, E. Density, surface tension, and refractive index of octane + 1-alkanol mixtures at T = 298.15 K. J. Chem. Eng. Data 2003, 48, 1251–1255. [Google Scholar] [CrossRef]
- Azizian, S.; Bashavard, N. Surface tension of dilute solutions of linear alcohols in benzyl alcohol. J. Chem. Eng. Data 2005, 50, 1303–1307. [Google Scholar] [CrossRef]
- Vazquez, G.; Alvarez, E.; Navaza, J.M. Surface tension of alcohol water + water from 20 to 50. degree. C. J. Chem. Eng. Data 1995, 40, 611–614. [Google Scholar] [CrossRef]
- Yaws, C.L. Thermophysical Properties of Chemicals and Hydrocarbons; William Andrew: Norwich, NY, USA, 2008. [Google Scholar]
- Bermúdez-Salguero, C.; Gracia-Fadrique, J.; Calvo, E.; Amigo, A. Densities, refractive indices, speeds of sound, and surface tensions for dilute aqueous solutions of 2-methyl-1-propanol, cyclopentanone, cyclohexanone, cyclohexanol, and ethyl acetoacetate at 298.15 K. J. Chem. Eng. Data 2011, 56, 3823–3829. [Google Scholar] [CrossRef]
- Enders, S.; Kahl, H.; Winkelmann, J. Surface tension of the ternary system water + acetone + toluene. J. Chem. Eng. Data 2007, 52, 1072–1079. [Google Scholar] [CrossRef]
- Howard, K.S.; McAllister, R. Surface tension of acetone–water solutions up to their normal boiling points. AIChE J. 1957, 3, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Jasper, J.J. The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1972, 1, 841–1010. [Google Scholar] [CrossRef] [Green Version]
- Wanchoo, R.; Narayan, J.; Raina, G.; Rattan, V. Excess properties of (2-propanol + ethyl acetate or benzene) binary liquid mixture. Chem. Eng. Commun. 1989, 81, 145–156. [Google Scholar] [CrossRef]
- Washburn, E.R.; Shildneck, C.H. Surface tension studies with n-butyl acetate. J. Am. Chem. Soc. 1933, 55, 2354–2357. [Google Scholar] [CrossRef]
- Kahl, H.; Wadewitz, T.; Winkelmann, J. Surface tension and interfacial tension of binary organic liquid mixtures. J. Chem. Eng. Data 2003, 48, 1500–1507. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Mejuto, J.C.; Navaza, J.M. Physicochemical properties of liquid mixtures. 1. Viscosity, density, surface tension and refractive index of cyclohexane + 2, 2, 4-trimethylpentane binary liquid systems from 25 C to 50 C. J. Chem. Eng. Data 2001, 46, 720–724. [Google Scholar] [CrossRef]
- Bagheri, A.; Abolhasani, A.; Moghadasi, A.; Nazari-Moghaddam, A.; Alavi, S. Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures. J. Chem. Thermodyn. 2013, 63, 108–115. [Google Scholar]
- Álvarez, E.; Correa, A.; Correa, J.M.; García-Rosello, E.; Navaza, J.M. Surface tensions of three amyl alcohol + ethanol binary mixtures from (293.15 to 323.15) K. J. Chem. Eng. Data 2011, 56, 4235–4238. [Google Scholar] [CrossRef]
- Azizian, S.; Hemmati, M. Surface tension of binary mixtures of ethanol+ ethylene glycol from 20 to 50 C. J. Chem. Eng. Data 2003, 48, 662–663. [Google Scholar] [CrossRef]
- Tsierkezos, N.G.; Molinou, I.E. Thermodynamic properties of water+ ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 1998, 43, 989–993. [Google Scholar] [CrossRef]
- Rolo, L.I.; Caco, A.I.; Queimada, A.J.; Marrucho, I.M.; Coutinho, J.A. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures. J. Chem. Eng. Data 2002, 47, 1442–1445. [Google Scholar] [CrossRef]
- Bermúdez-Salguero, C.; Gracia-Fadrique, J.S.; Amigo, A. Surface tension data of aqueous binary mixtures of methyl, ethyl, propyl, and butyl acetates at 298.15 K. J. Chem. Eng. Data 2010, 55, 2905–2908. [Google Scholar] [CrossRef]
- García-Abuín, A.; Gómez-Díaz, D.; Navaza, J.M.; Vidal-Tato, I. Surface tension of aqueous solutions of short n-alkyl-2-pyrrolidinones. J. Chem. Eng. Data 2008, 53, 2671–2674. [Google Scholar] [CrossRef]
- Hoke, B.C., Jr.; Patton, E.F. Surface tensions of propylene glycol + water. J. Chem. Eng. Data 1992, 37, 331–333. [Google Scholar] [CrossRef]
- Vargaftik, N.; Volkov, B.; Voljak, L. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 1983, 12, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Markarian, S.A.; Terzyan, A.M. Surface tension and refractive index of dialkylsulfoxide + water mixtures at several temperatures. J. Chem. Eng. Data 2007, 52, 1704–1709. [Google Scholar] [CrossRef]
- Abraham, M.H.; Smith, R.E.; Luchtefeld, R.; Boorem, A.J.; Luo, R.; Acree, W.E., Jr. Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 2010, 99, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Acree, W.E., Jr.; Michael, H. Abraham and his developed parameters: Various applications in medicine, chemistry and biology. Pharm. Sci. 2022, 28, 170–173. [Google Scholar] [CrossRef]
- Freitas, A.A.; Quina, F.H.; Carroll, F.A. A linear free energy analysis of the surface tension of organic liquids. Langmuir 2000, 16, 6689–6692. [Google Scholar] [CrossRef]
- Acree, J.; William, E.; Abraham, M.H. Solubility predictions for crystalline nonelectrolyte solutes dissolved in organic solvents based upon the Abraham general solvation model. Can. J. Chem. 2001, 79, 1466–1476. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zissimos, A.M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47. [Google Scholar] [CrossRef]
- Abraham, M.H.; McGowan, J. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 1987, 23, 243–246. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2.1. Available online: http://www.ufz.de/lserd (accessed on 10 October 2022).
- Sinha, S.; Yang, C.; Wu, E.; Acree, W.E., Jr. Abraham solvation parameter model: Examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids 2022, 2, 131–146. [Google Scholar] [CrossRef]
- Brown, T.N. Empirical regressions between system parameters and solute descriptors of polyparameter linear free energy relationships (PPLFERs) for predicting solvent-air partitioning. Fluid Phase Equilib. 2021, 540, 113035. [Google Scholar] [CrossRef]
- Grubbs, L.M.; Saifullah, M.; Nohelli, E.; Ye, S.; Achi, S.S.; Acree, W.E., Jr.; Abraham, M.H. Mathematical correlations for describing solute transfer into functionalized alkane solvents containing hydroxyl, ether, ester or ketone solvents. Fluid Phase Equilib. 2010, 298, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.-C.; Abraham, M.H.; Acree, W.E.; Lang, A.S. Predicting Abraham model solvent coefficients. Chem. Cent. J. 2015, 9, 12. [Google Scholar] [CrossRef]
Solvent | T (K) | MPD | Ref. | ||
---|---|---|---|---|---|
1,4-dioxane | 288 | 33.98 | 32.40 | 4.74 | [10] |
1,4-dioxane | 293 | 33.58 | 31.70 | 5.51 | [10] |
1,4-dioxane | 298 | 32.69 | 31.10 | 4.80 | [10] |
1,4-dioxane | 303 | 32.15 | 30.50 | 5.01 | [10] |
1,4-dioxane | 308 | 31.42 | 30.00 | 4.52 | [10] |
1-butanol | 288 | 24.68 | 24.80 | 0.28 | [11] |
1-butanol | 293 | 24.21 | 24.20 | 0.04 | [11] |
1-butanol | 298 | 24.10 | 23.70 | 1.70 | [11,12] |
1-butanol | 303 | 23.34 | 23.20 | 0.60 | [11] |
1-butanol | 308 | 22.79 | 22.70 | 0.26 | [11] |
1-hexanol | 288 | 26.08 | 26.40 | 1.23 | [11] |
1-hexanol | 293 | 25.61 | 25.90 | 1.09 | [11] |
1-hexanol | 298 | 25.43 | 25.40 | 0.08 | [11,12] |
1-hexanol | 303 | 24.74 | 25.00 | 0.89 | [11] |
1-hexanol | 308 | 24.19 | 24.50 | 1.41 | [11] |
1-octanol | 288 | 27.41 | 26.80 | 2.12 | [11] |
1-octanol | 293 | 26.94 | 26.30 | 2.26 | [11] |
1-octanol | 298 | 26.90 | 25.90 | 3.90 | [11,12] |
1-octanol | 303 | 26.07 | 25.40 | 2.57 | [11] |
1-octanol | 308 | 25.52 | 25.00 | 2.16 | [11] |
1-pentanol | 293 | 25.69 | 25.50 | 1.09 | [13,14] |
1-pentanol | 298 | 25.00 | 25.00 | 0.12 | [12,14] |
1-pentanol | 318 | 23.67 | 23.30 | 1.44 | [13,14] |
1-propanol | 293 | 23.69 | 24.20 | 2.11 | [13,14] |
1-propanol | 298 | 23.34 | 23.70 | 1.37 | [12,14] |
1-propanol | 303 | 22.89 | 23.20 | 1.22 | [14] |
1-propanol | 308 | 22.51 | 22.70 | 0.84 | [14] |
1-propanol | 313 | 22.11 | 22.30 | 0.68 | [14] |
1-propanol | 318 | 21.69 | 21.80 | 0.69 | [13,14] |
1-propanol | 323 | 21.31 | 21.40 | 0.56 | [14] |
2-butanol | 298 | 23.01 | 23.70 | 2.78 | [13] |
2-butanone | 293 | 24.70 | 22.80 | 7.61 | [15] |
2-butanone | 298 | 24.00 | 22.20 | 7.38 | [15] |
2-methyl–1-propanol | 298 | 22.34 | 23.40 | 4.52 | [16] |
2-pentanol | 293 | 23.70 | 24.20 | 2.24 | [13] |
2-pentanol | 298 | 23.28 | 23.70 | 1.89 | [13] |
2-pentanol | 315 | 21.60 | 22.20 | 2.69 | [13] |
2-propanol | 293 | 21.74 | 22.10 | 1.66 | [14] |
2-propanol | 298 | 21.03 | 21.60 | 2.57 | [14] |
2-propanol | 303 | 20.72 | 21.10 | 1.64 | [14] |
2-propanol | 308 | 20.23 | 20.60 | 1.73 | [14] |
2-propanol | 313 | 19.71 | 20.10 | 2.13 | [14] |
2-propanol | 318 | 19.21 | 19.70 | 2.55 | [14] |
2-propanol | 323 | 18.69 | 19.30 | 3.26 | [14] |
acetone | 273 | 25.17 | 25.50 | 1.47 | [17] |
acetone | 287 | 24.70 | 23.40 | 5.22 | [17] |
acetone | 288 | 23.37 | 23.30 | 0.39 | [17] |
acetone | 293 | 23.03 | 22.60 | 1.78 | [18] |
acetone | 298 | 22.50 | 22.00 | 2.22 | [18] |
acetone | 303 | 21.80 | 21.40 | 1.79 | [17] |
acetone | 308 | 21.20 | 20.90 | 1.60 | [17] |
acetone | 313 | 20.80 | 20.30 | 2.21 | [18] |
acetone | 318 | 19.78 | 19.90 | 0.35 | [17] |
acetone | 323 | 19.51 | 19.40 | 0.62 | [18] |
acetone | 328 | 18.60 | 19.00 | 1.88 | [17] |
acetonitrile | 298 | 28.41 | 28.40 | 0.21 | [19] |
acetonitrile | 303 | 28.03 | 27.50 | 2.07 | [19] |
acetonitrile | 308 | 27.40 | 26.60 | 2.88 | [19] |
acetonitrile | 313 | 26.76 | 25.80 | 3.55 | [19] |
acetonitrile | 318 | 26.13 | 25.10 | 4.06 | [19] |
benzene | 293 | 28.85 | 32.20 | 11.61 | [20] |
benzene | 303 | 27.55 | 30.80 | 11.62 | [20] |
butyl acetate | 298 | 24.88 | 22.80 | 8.32 | [21] |
cyclohexane | 288 | 25.34 | 24.30 | 4.18 | [22] |
cyclohexane | 293 | 25.00 | 23.40 | 6.28 | [23] |
cyclohexane | 298 | 24.20 | 22.60 | 6.49 | [23] |
cyclohexane | 303 | 23.85 | 21.90 | 8.22 | [23] |
cyclohexane | 308 | 23.02 | 21.20 | 7.91 | [22,23] |
cyclohexane | 318 | 21.84 | 19.90 | 8.70 | [22,23] |
cyclohexane | 328 | 20.71 | 18.80 | 9.13 | [22,23] |
dimethylsulfoxide | 288 | 43.68 | 45.40 | 3.94 | [24] |
dimethylsulfoxide | 298 | 42.18 | 43.90 | 4.10 | [24] |
dimethylsulfoxide | 308 | 41.11 | 42.60 | 3.55 | [24] |
dimethylsulfoxide | 318 | 39.99 | 41.40 | 3.40 | [24] |
dimethylsulfoxide | 328 | 38.72 | 40.20 | 3.93 | [24] |
ethanol | 288 | 22.68 | 24.70 | 8.86 | [14,25] |
ethanol | 293 | 22.28 | 24.10 | 8.17 | [25] |
ethanol | 298 | 21.78 | 23.60 | 8.13 | [12,25] |
ethanol | 303 | 21.40 | 23.00 | 7.62 | [25] |
ethanol | 308 | 21.04 | 22.50 | 7.13 | [25] |
ethanol | 313 | 20.66 | 22.10 | 6.82 | [25] |
ethanol | 318 | 20.36 | 21.60 | 6.24 | [25] |
ethanol | 323 | 19.91 | 21.20 | 6.53 | [25] |
ethyl acetate | 298 | 23.93 | 21.90 | 8.32 | [20] |
ethylene glycol | 283 | 49.76 | 46.70 | 6.25 | [26,27] |
ethylene glycol | 293 | 49.02 | 45.60 | 7.04 | [26,27] |
ethylene glycol | 298 | 48.24 | 45.10 | 6.59 | [26,27] |
ethylene glycol | 303 | 47.67 | 44.60 | 6.48 | [26,27] |
ethylene glycol | 308 | 47.50 | 44.10 | 7.14 | [26,27] |
ethylene glycol | 313 | 47.58 | 43.70 | 8.22 | [26,27] |
ethylene glycol | 318 | 46.40 | 43.30 | 6.79 | [26,27] |
ethylene glycol | 323 | 46.68 | 42.80 | 8.23 | [26,27] |
heptane | 288 | 20.73 | 22.20 | 6.90 | [11,22] |
heptane | 293 | 20.40 | 21.30 | 4.56 | [11,28] |
heptane | 298 | 19.64 | 20.60 | 4.74 | [11,22] |
heptane | 303 | 19.34 | 19.90 | 2.69 | [11,22] |
heptane | 308 | 18.80 | 19.20 | 2.07 | [11,22] |
heptane | 313 | 18.46 | 18.60 | 0.60 | [28] |
heptane | 318 | 17.76 | 18.00 | 1.24 | [22] |
heptane | 323 | 17.42 | 17.40 | 0.06 | [28] |
heptane | 328 | 16.68 | 16.90 | 1.44 | [22] |
heptane | 333 | 16.46 | 16.40 | 0.18 | [28] |
heptane | 343 | 15.32 | 15.50 | 1.44 | [28] |
methanol | 293 | 22.80 | 22.80 | 0.18 | [14] |
methanol | 298 | 22.27 | 22.30 | 0.09 | [14] |
methanol | 303 | 21.79 | 21.70 | 0.46 | [14] |
methanol | 308 | 21.52 | 21.20 | 1.67 | [14] |
methanol | 313 | 21.13 | 20.70 | 2.22 | [14] |
methanol | 318 | 20.61 | 20.20 | 2.04 | [14] |
methanol | 323 | 19.86 | 19.80 | 0.55 | [14] |
methyl acetate | 298 | 24.79 | 22.90 | 7.62 | [29] |
N,N-dimethylformamide | 288 | 36.96 | 36.40 | 1.41 | [22] |
N,N-dimethylformamide | 298 | 35.83 | 35.30 | 1.40 | [22] |
N,N-dimethylformamide | 308 | 34.65 | 34.30 | 0.95 | [22] |
N,N-dimethylformamide | 318 | 33.37 | 33.40 | 0.12 | [22] |
N,N-dimethylformamide | 328 | 32.03 | 32.60 | 1.69 | [22] |
N-methyl–2-pyrrolidone | 239 | 41.13 | 44.30 | 7.80 | [22] |
N-methyl–2-pyrrolidone | 278 | 42.60 | 40.80 | 4.18 | [22] |
N-methyl–2-pyrrolidone | 288 | 41.35 | 40.10 | 3.00 | [22] |
N-methyl–2-pyrrolidone | 298 | 40.25 | 39.50 | 1.99 | [22] |
N-methyl–2-pyrrolidone | 303 | 40.38 | 39.10 | 3.12 | [30] |
N-methyl–2-pyrrolidone | 308 | 39.10 | 38.80 | 0.66 | [22] |
N-methyl–2-pyrrolidone | 313 | 39.99 | 38.50 | 3.63 | [30] |
N-methyl–2-pyrrolidone | 318 | 37.91 | 38.30 | 0.98 | [22] |
N-methyl–2-pyrrolidone | 328 | 36.80 | 37.80 | 2.61 | [22] |
N-methyl–2-pyrrolidone | 333 | 35.90 | 37.50 | 4.46 | [30] |
N-methyl–2-pyrrolidone | 338 | 35.66 | 37.30 | 4.54 | [22] |
propylene glycol | 298 | 35.80 | 36.30 | 1.51 | [31] |
propylene glycol | 303 | 35.70 | 35.80 | 0.34 | [31] |
propylene glycol | 313 | 35.00 | 34.90 | 0.40 | [31] |
propylene glycol | 323 | 34.10 | 34.00 | 0.35 | [31] |
toluene | 288 | 28.93 | 31.90 | 10.40 | [22] |
toluene | 298 | 27.76 | 30.50 | 9.69 | [22] |
toluene | 308 | 26.60 | 29.10 | 9.47 | [22] |
toluene | 318 | 25.46 | 27.90 | 9.66 | [22] |
toluene | 328 | 24.29 | 26.80 | 10.50 | [22] |
water | 283 | 74.27 | 77.60 | 4.42 | [32] |
water | 293 | 72.72 | 74.80 | 2.83 | [32] |
water | 298 | 71.92 | 73.50 | 2.18 | [16,32,33] |
water | 303 | 71.18 | 72.30 | 1.53 | [32,33] |
water | 308 | 70.35 | 71.10 | 1.08 | [32,33] |
water | 311 | 69.91 | 70.40 | 0.76 | [32] |
water | 313 | 69.49 | 70.00 | 0.73 | [32] |
water | 318 | 68.67 | 69.00 | 0.41 | [32,33] |
water | 323 | 67.78 | 67.90 | 0.24 | [32,33] |
water | 328 | 66.60 | 67.00 | 0.57 | [32,33] |
Descriptor | Definition |
---|---|
Abraham solvent parameters [7,34,35] | |
c | The intercept value in Abraham’s solvation model |
e | Excess molar refraction |
s | Polarity/polarizability |
a | Hydrogen-bond acidity |
b | Hydrogen-bond basicity |
v | McGowan volume characteristic |
Hansen solubility parameters [8] | |
δD | The energy from dispersion forces between molecules |
δP | The energy from dipolar intermolecular force between molecules |
δH | The energy from hydrogen bonds between molecules |
Catalan parameters [9] | |
SdP | Solvent dipolarity |
SP | Solvent polarizability |
SA | Solvent acidity |
SB | Solvent basicity |
Solvent | c | e | s | a | b | v |
---|---|---|---|---|---|---|
1-butanol | 0.17 | 0.40 | −1.01 | 0.06 | −3.96 | 4.04 |
1-hexanol | 0.12 | 0.49 | −1.16 | 0.05 | −3.98 | 4.13 |
1-octanol | −0.03 | 0.49 | −1.04 | −0.02 | −4.24 | 4.22 |
1-pentanol | 0.15 | 0.54 | −1.23 | 0.14 | −3.86 | 4.08 |
1-propanol | 0.14 | 0.41 | −1.03 | 0.25 | −3.77 | 3.99 |
1,4-dioxane | 0.10 | 0.35 | −0.08 | −0.56 | −4.83 | 4.17 |
2-butanol | 0.19 | 0.35 | −1.13 | 0.02 | −3.57 | 3.97 |
2-butanone | 0.25 | 0.26 | −0.08 | −0.77 | −4.86 | 4.15 |
2-methyl−1-propanol | 0.13 | 0.25 | −0.98 | 0.16 | −3.88 | 4.11 |
2-pentanol | 0.12 | 0.46 | −1.33 | 0.21 | −3.75 | 4.20 |
2-propanol | 0.10 | 0.34 | −1.05 | 0.41 | −3.83 | 4.03 |
acetone | 0.31 | 0.31 | −0.12 | −0.61 | −4.75 | 3.94 |
acetonitrile | 0.41 | 0.08 | 0.33 | −1.57 | 4.39 | 3.36 |
benzene | 0.14 | 0.46 | −0.59 | −3.10 | −4.63 | 4.49 |
butyl acetate | 0.25 | 0.36 | −0.50 | −0.87 | −4.97 | 4.28 |
cyclohexane | 0.16 | 0.78 | −1.68 | −3.74 | −4.93 | 4.58 |
dimethylsulfoxide | −0.19 | 0.33 | 0.79 | −1.26 | −4.54 | 3.36 |
ethanol | 0.22 | 0.47 | −1.04 | 0.33 | −3.60 | 3.86 |
ethyl acetate | 0.33 | 0.37 | −0.45 | −0.70 | −4.90 | 4.15 |
ethylene glycol | −0.27 | 0.58 | −0.51 | 0.72 | −2.62 | 2.73 |
heptane | 0.33 | 0.67 | −2.06 | −3.32 | −4.73 | 4.54 |
methanol | 0.28 | 0.33 | −0.71 | 0.24 | −3.32 | 3.55 |
methyl acetate | 0.35 | 0.22 | −0.15 | −1.04 | −4.53 | 3.97 |
N-methyl−2-pyrrolidone | 0.15 | 0.53 | 0.23 | 0.84 | −4.79 | 3.67 |
N,N-dimethylformamide | −0.31 | −0.06 | 0.34 | 0.36 | −4.87 | 4.49 |
propylene glycol | −0.15 | 0.75 | −0.97 | 0.68 | −3.13 | 3.25 |
toluene | 0.14 | 0.53 | −0.72 | −3.01 | −4.82 | 4.55 |
water | −0.99 | 0.58 | 2.55 | 3.81 | 4.84 | −0.87 |
Hansen Parameters | Catalan Parameters | ||||||
---|---|---|---|---|---|---|---|
solvent | δD | δP | δH | SP | SdP | SA | SB |
1-butanol | 16.00 | 5.70 | 15.80 | 0.67 | 0.66 | 0.34 | 0.81 |
1-hexanol | 15.90 | 5.80 | 12.50 | 0.70 | 0.55 | 0.32 | 0.88 |
1-octanol | 17.00 | 3.30 | 11.90 | 0.71 | 0.45 | 0.30 | 0.92 |
1-pentanol | 13.83 | 8.82 | 13.80 | 0.69 | 0.59 | 0.32 | 0.86 |
1-propanol | 16.00 | 6.80 | 17.40 | 0.66 | 0.75 | 0.37 | 0.78 |
1,4-dioxane | 19.00 | 1.80 | 7.40 | 0.74 | 0.31 | 0.00 | 0.44 |
2-butanol | 13.38 | 9.53 | 14.08 | 0.66 | 0.71 | 0.22 | 0.89 |
2-butanone | 16.00 | 9.00 | 5.10 | 0.67 | 0.87 | 0.00 | 0.52 |
2-methyl–1-propanol | 13.38 | 9.53 | 14.08 | 0.66 | 0.68 | 0.31 | 0.83 |
2-pentanol | 13.65 | 8.87 | 12.95 | 0.67 | 0.67 | 0.20 | 0.92 |
2-propanol | 12.97 | 10.35 | 15.68 | 0.63 | 0.81 | 0.28 | 0.83 |
acetone | 15.50 | 10.40 | 7.00 | 0.65 | 0.91 | 0.00 | 0.48 |
acetonitrile | 11.59 | 12.95 | 16.34 | 0.65 | 0.97 | 0.04 | 0.29 |
benzene | 18.40 | 0.00 | 2.00 | 0.79 | 0.27 | 0.00 | 0.12 |
butyl acetate | 14.49 | 7.74 | 6.53 | 0.67 | 0.54 | 0.00 | 0.53 |
cyclohexane | 16.80 | 0.00 | 0.20 | 0.68 | 0.00 | 0.00 | 0.07 |
dimethylsulfoxide | 18.40 | 16.40 | 10.20 | 0.83 | 1.00 | 0.07 | 0.65 |
ethanol | 15.80 | 8.80 | 19.40 | 0.64 | 0.78 | 0.40 | 0.66 |
ethyl acetate | 15.80 | 5.30 | 7.20 | 0.66 | 0.60 | 0.00 | 0.54 |
ethylene glycol | 17.00 | 11.00 | 26.00 | 0.78 | 0.91 | 0.72 | 0.53 |
heptane | 15.30 | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.08 |
methanol | 15.10 | 12.30 | 22.30 | 0.61 | 0.90 | 0.61 | 0.55 |
methyl acetate | 12.68 | 11.42 | 11.79 | 0.65 | 0.64 | 0.00 | 0.53 |
N-methyl–2-pyrrolidone | 18.00 | 12.30 | 7.20 | 0.81 | 0.96 | 0.02 | 0.61 |
N,N-dimethylformamide | 17.40 | 13.70 | 11.30 | 0.76 | 0.98 | 0.03 | 0.61 |
propylene glycol | 12.75 | 14.23 | 27.95 | 0.73 | 0.89 | 0.48 | 0.60 |
toluene | 18.00 | 1.40 | 2.00 | 0.78 | 0.28 | 0.00 | 0.13 |
water | 15.50 | 16.00 | 42.30 | 0.68 | 1.00 | 1.06 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabudi, N.; Shayanfar, A.; Acree, W.E., Jr.; Jouyban, A. Correlation of Surface Tension of Mono-Solvents at Various Temperatures. Liquids 2022, 2, 378-387. https://doi.org/10.3390/liquids2040021
Kabudi N, Shayanfar A, Acree WE Jr., Jouyban A. Correlation of Surface Tension of Mono-Solvents at Various Temperatures. Liquids. 2022; 2(4):378-387. https://doi.org/10.3390/liquids2040021
Chicago/Turabian StyleKabudi, Navid, Ali Shayanfar, William E. Acree, Jr., and Abolghasem Jouyban. 2022. "Correlation of Surface Tension of Mono-Solvents at Various Temperatures" Liquids 2, no. 4: 378-387. https://doi.org/10.3390/liquids2040021
APA StyleKabudi, N., Shayanfar, A., Acree, W. E., Jr., & Jouyban, A. (2022). Correlation of Surface Tension of Mono-Solvents at Various Temperatures. Liquids, 2(4), 378-387. https://doi.org/10.3390/liquids2040021