The Antimicrobial Potential of Actinomycetes Isolated from Marine Soils in Tyre City Beach, Lebanon: A Promising Source of Novel Bioactive Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Different Actinomycetes from Different Areas of Marine Soil in Tyre City Beach, Lebanon
2.1.1. Sample Collection
2.1.2. Isolation of Actinomycetes
2.2. Identification of Marine Actinomycetes
2.3. Screening of Marine Actinomycetes for Their Potential to Produce Antimicrobial Active Metabolites
2.3.1. Primary Screening for Antimicrobial Activity by Cross-Streak Method
2.3.2. Secondary Screening for the Secretion of Antibacterial Metabolites by Agar Well Diffusion
2.4. Optimization of Antimicrobial Production
2.5. Fermentation and Extraction of Secondary Metabolites
2.6. Identification of the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the Isolated Strains
2.6.1. Minimal Inhibitory Concentration (MIC) Determination
2.6.2. Minimum Bactericidal Concentration (MBC) Determination
2.7. Statistical Analysis
3. Results
3.1. Sample Collection and Actinomycete Isolation
3.2. Identification of Marine Actinomycetes
3.3. Biochemical and Physiological Characterization of the Isolated Actinomycetes from Tyre City Beach
3.4. Screening of Marine Actinomycetes for Their Potential to Generate Antimicrobial Active Metabolites
3.5. Optimization of the Production of Antimicrobial Secondary Metabolites
3.6. MIC and MBC Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Spp. | Concentration of the Secondary Metabolites (Crude Extract) (mg/mL) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Gram Positive Bacteria | Gram Negative Bacteria | |||||||||
S. aureus | Significance | B. cereus | Significance | E. coli | Significance | S. typhi | Significance | |||
1 | Kocuria rosea | 0.0625 | ND | ND | ND | ND | ND | ND | ND | ND |
0.125 | ND | ND | ND | ND | ND | ND | ND | ND | ||
0.25 | 0.0006 | *** | 0.0002 | *** | ND | ND | ND | ND | ||
2 | Micrococcus luteus | 0.0625 | ND | ND | ND | ND | ND | ND | ND | ND |
0.125 | ND | ND | 0.001 | ** | ND | ND | ND | ND | ||
0.25 | ND | ND | 0.0006 | *** | 0.0002 | *** | 0.002 | ** | ||
3 | Streptomyces longisporoflavus | 0.0625 | ND | ND | ND | ND | ND | ND | ND | ND |
0.125 | 0.001 | ** | 0.0006 | *** | ND | ND | ND | ND | ||
0.25 | 0.0001 | *** | 0.0004 | *** | 0.0001 | *** | 0.0001 | *** |
References
- Dilip, C.V.; Mulaje, S.; Mohalkar, R. A review on actinomycetes and their biotechnological application. Int. J. Pharm. Sci. Res. 2013, 4, 1730–1742. [Google Scholar]
- Sacramento, D.R.; Coelho, R.R.R.; Wigg, M.D.; Toledo Luna Linhares, L.F.D.; Matos dos Santos, M.G.; Azevedo Soares Semêdo, L.T.D.; Ribeiro da Silva, A.J. Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil. World J. Microbiol. Biotechnol. 2004, 20, 225–229. [Google Scholar] [CrossRef]
- Atta, H.M. An antifungal agent produced by Streptomyces olivaceiscleroticus, AZ-SH514. World Appl. Sci. J. 2009, 6, 1495–1505. [Google Scholar]
- Fukuchi, N.; Futaki, F.; Kito, M.; Sato, S.; Kajiura, T.; Ono, Y. Substance with Antithrombotic Activity and Method for Detecting Glycokallidin. U.S. Patent 7,608,695, 27 October 2009. [Google Scholar]
- Olano, C.; Méndez, C.; Salas, J.A. Antitumor compounds from actinomycetes: From gene clusters to new derivatives by combinatorial biosynthesis. Nat. Prod. Rep. 2009, 26, 628–660. [Google Scholar] [CrossRef]
- Ser, H.L.; Palanisamy, U.D.; Yin, W.F.; Abd Malek, S.N.; Chan, K.G.; Goh, B.H.; Lee, L.H. Presence of antioxidative agent, Pyrrolo [1, 2-a] pyrazine-1, 4- dione, hexahydro-in newly isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol. 2015, 6, 854. [Google Scholar] [CrossRef]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef]
- Riedlinger, J.; Reike, A.; Zahner, H.; Krismer, B.; Bull, A.T.; Maldonado, L.A.; Ward, A.C.; Goodfellow, M.; Bister, B.; Bischoff, D.; et al. Abyssomicins, Inhibitors of the Para-aminobenzoic Acid. J. Antibiot. 2004, 57, 271–279. [Google Scholar] [CrossRef]
- Fehling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor From A Novel Microbial Source, A Marine Bacterium of the New Genus Salinospora. Angew. Chem. Int. Ed. 2003, 42, 355–357. [Google Scholar] [CrossRef]
- Hughes, C.; Prieto Davo, A.; Jensen, P.R.; Fenical, W. The Marynopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine Streptomyces sp. Org. Lett. 2008, 10, 629–631. [Google Scholar] [CrossRef]
- Maldonado, L.A.; Fenical, W.; Jensen, P.R.; Kauffman, C.A.; Mincer, T.J.; Ward, A.C.; Bull, A.T.; Goodfellow, M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., Obligate Marine Actinomycetes Belonging to the Family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2005, 55, 1759–1766. [Google Scholar] [CrossRef]
- Baltz, R.H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 2008, 8, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, N.B.; Sabry, S.A.; El-Sherif, Z.M.; Abu El-Ela, G.A. Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J. Gen. Appl. Microbiol. 2000, 46, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zeng, W.; Huang, Y.; Yang, Z.; Li, J.; Cai, H.; Su, W. Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol. Lett. 2000, 188, 87–91. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, D.; Singh, S.K.; Singh, V.K.; Singh, A.V.; Kumar, A. Role of actinomycetes in bioactive and nanoparticle synthesis. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing: Sawston, UK, 2019; pp. 163–182. [Google Scholar]
- Ameri, A.; Shakibaie, M.; Ameri, A.; Faramarzi, M.A.; Amir-Heidari, B.; Forootanfar, H. Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalination Water Treat. 2016, 57, 21552–21563. [Google Scholar] [CrossRef]
- Fuentes, M.S.; Benimeli, C.S.; Cuozzo, S.A.; Amoroso, M.J. Isolation of pesticide-degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. Int. Biodeterior. Biodegrad. 2010, 64, 434–441. [Google Scholar] [CrossRef]
- Fuentes, M.S.; Briceño, G.E.; Saez, J.M.; Benimeli, C.S.; Diez, M.C.; Amoroso, M.J. Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Res. Int. 2013, 2013, 392573. [Google Scholar] [CrossRef]
- Abou Fayad, A.; Itani, D.; Miari, M.; Tanelian, A.; Iweir, S.; Matar, G.M. From bugs to drugs: Combating antimicrobial resistance by discovering novel antibiotics. J. Infect. Dev. Ctries. 2018, 12, 3S. [Google Scholar] [CrossRef]
- Araj, G.F.; Baba, O.Z.; Itani, L.Y.; Avedissian, A.Z.; Sobh, G.M. Non-tuberculous mycobacteria profiles and their anti-mycobacterial resistance at a major medical center in Lebanon. J. Infect. Dev. Ctries. 2019, 13, 612–618. [Google Scholar] [CrossRef]
- Rim, I.W. Novel Anti-Biolfilm Natural Products from Microorganisms Isolated from Lebanon; AUB Scholar Works; American University of Beirut: Beirut, Lebanon, 2009. [Google Scholar]
- Abou Fayad, A.; Itani, D.; Miari, M.; Tanelian, A.; Matar, G.M. Combating antimicrobial resistance by utilizing novel antibiotics from soil and marine microorganisms in Lebanon. J. Infect. Dev. Ctries. 2019, 79, 52. [Google Scholar]
- Velasco-Alzate, K.Y.; Bauermeister, A.; Tangerina, M.M.; Lotufo, T.M.; Ferreira, M.J.; Jimenez, P.C.; Padilla, G.; Lopes, N.P.; Costa-Lotufo, L.V. Marine bacteria from Rocas Atoll as a rich source of pharmacologically active compounds. Mar. Drugs 2019, 17, 671. [Google Scholar] [CrossRef]
- Kumar, S.; Kannabiran, K. Diversity and Optimization of Process Parameters for the Growth of Streptomyces VITSVK9 spp. Isolated from Bay of Bengal, India. J. Nat. Env. Sci. 2010, 1, 56–65. [Google Scholar]
- Aghamirian, M.R.; Ghiasian, S.A. Isolation and characterization of medically important aerobic actinomycetes in soil of iran (2006–2007). Open Microbiol. J. 2009, 3, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Ramakrishna, D.; Raja Gopal, S. A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC 10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J. Biol. Sci. 2011, 4, 1–14. [Google Scholar] [CrossRef]
- Dundar, H.; Brede, D.A.; La Rosa, S.L.; El-Gendy, A.O.; Diep, D.B.; Nes, I.F. The fsr quorum-sensing system and cognate gelatinase orchestrate the expression and processing of proprotein EF_1097 into the Mature antimicrobial peptide enterocin O16. J. Bacteriol. 2015, 197, 2112–2121. [Google Scholar] [CrossRef]
- Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Seghal Kiran, G.; Rajeetha Ravji, T.; Natarajaseenivasan, K.; Hema, T.A. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435–445. [Google Scholar] [CrossRef]
- Kadiri, S.K.; Yarla, N.S. Optimization of antimicrobial metabolites production by Streptomyces fradiae. Int. J. Pharm. Pharm. Sci. 2016, 7, 223–225. [Google Scholar]
- Selvameenal, L.; Radhakrishnan, M.; Balagurunathan, R. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian J. Pharm. Sci. 2009, 71, 499–504. [Google Scholar]
- Janardhan, A.; Kumar, A.P.; Viswanath, B.; Saigopal, D.V.R.; Narasimha, G. Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol. Res. Int. 2014, 20, 217030. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Savic, M.; Bratic, I.; Vasiljevic, B. Streptomyces durmitorensis sp. nov., a producer of an FK506-like immunosuppressant. Int. J. Syst. Evol. Microbiol. 2007, 57, 2119–2124. [Google Scholar] [CrossRef]
- Tan, L.; Ser, H.; Yin, W.; Chan, K.; Lee, L.; Goh, B. Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Front. Microbiol. 2015, 6, 1316. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, G.; Sekar, T. Isolation and Screening of Actinomycetes from Marine Sediments for their Potential to Produce Antimicrobials. Int. J. Life Sci. Pharm. Res. 2013, 2, 115–126. [Google Scholar]
- Kumar, S.; Kannabiran, K. Antifungal Activity of Streptomyces VITSVK5 spp. Against Drug Resistant Aspergillus Clinical Isolates from Pulmonary Tuberculosis Patients. J. Mycol. Medicale 2010, 20, 101–107. [Google Scholar] [CrossRef]
- Goodfellow, M.; Fiedler, H.-P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie Van Leeuwenhoek 2010, 98, 119–142. [Google Scholar] [CrossRef]
- Das, S.; Lyla, P.S.; Khan, S.A. Marine microbial diversity and the impact of the coastal environment on microbial populations, including actinomycetes. Curr. Sci. 2006, 90, 1175–1183. [Google Scholar]
- Pathom-aree, W.; Stach JE, M.; Ward, A.C.; Horikoshi, K.; Bull, A.T.; Goodfellow, M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006, 10, 181–189. [Google Scholar] [CrossRef]
- Brady, N.; Weil, R. The Nature and Properties of Soils; Pearson Education: Bengaluru, India, 1999; 359p. [Google Scholar]
- James, D.W.; Wells, K.L. Soil Testing and Plant Analysis; SSSA Book Series 3; Wiley: Hoboken, NJ, USA, 1990; Volume 3, p. 40. [Google Scholar]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef]
- Barka, E.A.; Vetsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; Van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2015, 80, 1–43. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Williams, S.T. Actinomycetes as Agents of Biodegradation in the Environment—A review. Gene 1992, 115, 189–192. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bartha, R. Microbial Ecology: Fundamentals and Applications; Benjamin-Cummings Publishing Co.: Menlo Park, CA, USA, 1997; pp. 309–313. [Google Scholar]
- Elbendary, A.A.; Hessain, A.M.; El-Hariri, M.D.; Seida, A.A.; Moussa, I.M.; Mubarak, A.S.; Kabli, S.A.; Hemeg, H.A.; El Jakee, J.K. Isolation of Antimicrobial Producing Actinobacteria from Soil samples. Saudi J. Biol. Sci. 2018, 25, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Islam, M.Z.; Islam, A.U. Antibacterial Activities of Actinomycete Isolates Collected from Soils of Rajshahi, Bangladesh. Biotechnol. Res. Int. 2011, 6, 857925. [Google Scholar] [CrossRef] [PubMed]
- Dehnad, A.; Parsa, L.; Bakhshi, R.; Soofiani, S.A.; Mokhtarzadeh, A. Investigation Antibacterial Activity of Streptomycetes Isolates from Soil Samples, West of Iran. Afr. J. Microbiol. Res. 2010, 4, 1542–1549. [Google Scholar]
- Arifuzzaman, M.; Khatun, M.R.; Rahman, H. Isolation and Screening of Actinomycetes from Sundarbans Soil for Antibacterial Activity. Afri. J. Biotech. 2010, 9, 4615–4619. [Google Scholar]
- Jain, P.K.; Jain, P.C. Antifungal Activity of Some Actinomycetes Isolated from Various Habitats. Hindustan Antibiot. Bull. 2003, 45–46, 5–10. [Google Scholar]
- Dharumaduari, D.; Nooruddin, T.; Annamalai, P. An Antifungal Compound: 40 Phenyl-1-napthyl- phenyl Acetamide from Streptomyces Species Universitatis Series. Med. Biol. 2008, 15, 7–12. [Google Scholar]
- Ouhdouch, Y.; Barakate, M.; Finance, C. Actinomycetes of Moroccan habitats: Isolation and Screening for Antifungal Activities. Eur. J. Soil. Biol. 2001, 37, 69–74. [Google Scholar] [CrossRef]
- Ramasamy, V.; Subban, M.; Annamalai, P. Isolation, characterization and antimicrobial activity of Actinobacteria from point Calimere coastal region, east coast of India. Int. Res. J. Pharm. 2010, 1, 358–365. [Google Scholar]
- Saurav, K.; Kannabiran, K. Cytotoxicity and antioxidant activity of 5-(2,4- Dimethylbenzyl) Pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi J. Biol. Sci. 2012, 19, 81–86. [Google Scholar] [CrossRef]
- Sathiyaseelan, K.; Stella, D. Isolation, Identification and Antimicrobial Activity of Marine Actinomycetes Isolated from Parangipettai. Recent Res. Sci. Technol. 2011, 3, 74–77. [Google Scholar]
- Shantikumar Singh, L.; Indra baruah Bora, T.C. Actinomycetes of Loktak Habitat; Isolation and Screening for Antimicrobial Activitie. Biotechnology 2006, 5, 217–221. [Google Scholar] [CrossRef]
- Kathiresan, K.; Balagurunathan, R.; Masilamani Selvam, M. Fungicidal Activity of Marine Actinomycetes against Phytopathogemic fungi. Indian J. Biotechnol. 2005, 4, 271–276. [Google Scholar]
- Sánchez, S.; Demain, A.L. Metabolic regulation of fermentation processes. Enzym. Microb. Technol. 2008, 31, 895–906. [Google Scholar] [CrossRef]
- Sánchez, S.; Chávez, A.; Forero, A.; García-Huante, Y.; Romero, A.; Sánchez, M.; Rocha, D. Carbon source regulation of antibiotic production. J. Antibiot. 2010, 63, 442–459. [Google Scholar] [CrossRef]
- Martín, J.F.; Liras, P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 1989, 43, 173–206. [Google Scholar] [CrossRef]
- Martín, J.F.; Demain, A.L. Control of antibiotic biosynthesis. Microbiol. Mol. Biol. Rev. 1980, 44, 230–251. [Google Scholar] [CrossRef]
- Sujatha, P.; Raju, K.B.; Ramana, T. Studies on a new Marine Streptomycete BT-408 Producing Polyketide Antibiotic SBR-22 Effective Against Methicillin Resistant Staphylococcus aureus. Microbiol. Res. 2005, 160, 119–126. [Google Scholar] [CrossRef]
- Pandey, A.; Shukla, A.; Majumdar, S. Utilization of Carbon and Nitrogen Sources by Streptomyces kanamyceticus M 27 for the Production of an Anti-Bacterial Antibiotic. Afr. J. Biotechnol. 2005, 4, 909–910. [Google Scholar]
- Ahmad, M.S.; El-Gendy, A.O.; Ahmed, R.R.; Hassan, H.M.; El-Kabbany, H.M.; Merdash, A.G. Exploring the Antimicrobial and Antitumor Potentials of Streptomyces sp. AGM12-1 Isolated from Egyptian Soil. Front. Microbiol. 2017, 8, 438. [Google Scholar] [CrossRef]
- Sharmin, T.; Rahman, M.d.-A.; Anisuzzaman AS-Md Ul-Islam, M.d.-A. Antimicrobial and Cytotoxic Activities of Secondary Metabolites Obtained from a Novel Species of Streptomyces. Bangladesh Pharm. J. 2013, 16, 15–19. [Google Scholar] [CrossRef]
- Saravanakumar, P. In-vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. Biomed. Microbiol. 2014, 14, 291. [Google Scholar]
- Pudi, N.; Varikuti, G.D.; Badana, A.K.; Gavara, M.M.; Kumari, S.; Malla, R. Studies on Optimization of Growth Parameters for Enhanced Production of Antibiotic Alkaloids by Isolated Marine actinomycetes. J. Appl. Pharm. Sci. 2016, 6, 181–188. [Google Scholar] [CrossRef]
Sample No. | Season | Sampling Site | Sampling Location | Depth | Latitude | Longitude |
---|---|---|---|---|---|---|
1 | Fall/winter 2021 Spring/summer 2022 | A1 | Sandy beach | 15.0 cm | 33°15′38.7″ N | 35°12′34.164″ E |
2 | B1 | |||||
3 | C1 | |||||
4 | D1 | |||||
5 | A2 | Under sea surface | 2.0 m | |||
6 | B2 | |||||
7 | C2 | |||||
8 | D2 |
Season | Sampling Sites | Spp. | Quantity of Colony Forming Units (CFU/mL) |
---|---|---|---|
Fall (11 isolates) | A2 | Kocuria rosea, Kytococccus sedentarius, and Dermacoccus nishinomiyaensis | 54 × 106 |
B1 | Kocuria rosea | 126 × 105 | |
B2 | Kocuria rhizophila and Kytococccus sedentarius | 163 × 106 | |
C2 | Kocuria rosea and Kocuria rhizophila | 77 × 106 | |
D2 | Kocuria rosea, Kocuria rhizophila, and Dermacoccus nishinomiyaensis | 211 × 105 | |
Winter (25 isolates) | A1 | Kocuria rosea, Kocuria rhizophila, Kytococccus sedentarius, and Micrococcus luteus | 154 × 105 |
A2 | Kocuria rosea, Kocuria kristinae, and Kytococccus sedentarius | 91 × 106 | |
B1 | Kocuria rhizophila, Kytococccus sedentarius, Dermacoccus nishinomiyaensis, and Micrococcus luteus | 231 × 105 | |
B2 | Kocuria rosea and Kytococccus sedentarius | 53 × 106 | |
C1 | Kocuria rosea, Kocuria rhizophila, and Kocuria kristinae | 72 × 106 | |
C2 | Kytococccus sedentarius | 109 × 106 | |
D1 | Kocuria rosea, Kocuria kristinae, and Kytococccus sedentarius | 137 × 106 | |
D2 | Kocuria rosea, Kocuria rhizophila, Kytococccus sedentarius, Dermacoccus nishinomiyaensis, and Micrococcus luteus | 61 × 106 | |
Spring (10 isolates) | A1 | Kocuria rosea | 193 × 105 |
A2 | Kytococccus sedentarius | 85 × 106 | |
B1 | Kytococccus sedentarius | 71 × 106 | |
B2 | Kocuria rhizophila | 67 × 106 | |
C1 | Kocuria rosea | 114 × 106 | |
C2 | Kocuria rosea, Kocuria rhizophila, and Dermacoccus nishinomiyaensis | 150 × 105 | |
D1 | Dermacoccus nishinomiyaensis | 165 × 105 | |
D2 | Kocuria kristinae | 102 × 106 | |
Summer (34 isolates) | A1 | Kocuria rosea, Dermacoccus nishinomiyaensis, Streptomyces longisporoflavus, and Streptomyces griseus | 188 × 105 |
A2 | Kocuria rosea and Kocuria varians | 165 × 105 | |
B1 | Kocuria rhizophila, Kytococccus sedentarius, Micrococcus luteus, and Micrococcus layla | 191 × 106 | |
B2 | Kocuria rosea, Kocuria kristinae, and Dermacoccus nishinomiyaensis | 185 × 106 | |
C1 | Kocuria rhizophila, Kocuria varians, Kocuria kristinae, Kytococccus sedentarius, Dermacoccus nishinomiyaensis, Micrococcus luteus, Micrococcus laylae, Streptomyces longisporoflavus, and Streptomyces griseus | 155 × 106 | |
C2 | Kocuria rosea | 143 × 105 | |
D1 | Kocuria rhizophila, Kocuria kristinae, Streptomyces longisporoflavus, and Streptomyces griseus | 252 × 106 | |
D2 | Kocuria rosea, Kocuria rhizophila, Kocuria varians, Kytococccus sedentarius, Dermacoccus nishinomiyaensis, Micrococcus luteus, and Micrococcus laylae | 230 × 106 |
Serial No. | Isolated Actinomycetes | Microscopic Features |
---|---|---|
1 | Kocuria rosea | Cocci arranged in pairs, not in chains |
2 | Kocuria rhizophila | Cocci arranged in pairs with short chains |
3 | Dermacoccus nishinomiyaensis | Cocci arranged in pairs, tetrads, or irregular clusters of tetrads |
4 | Kytococccus sedentarius | Cocci arranged in pairs, tetrads, or irregular clusters of tetrads |
5 | Kocuria varians | Cocci arranged in pairs, tetrads with short chains |
6 | Kocuria kristinae | Cocci arranged in pairs, tetrads with short chains |
7 | Micrococcus luteus | Long, filamentous, branched bacilli |
8 | Micrococcus laylae | Long, filamentous, branched bacilli |
9 | Streptomyces longisporoflavus | Short, filamentous, with short chains |
10 | Streptomyces griseus | Short, filamentous, with short chains |
Enzymatic Activity | Catalase Activity | Oxidase Activity | Citrate Activity | Urease Production Activity | Nitrate Reductase Activity | Methyl Red (MR) Activity | Voges–Proskauer (VP) Activity | H2S Production Activity | Indole Activity | |
---|---|---|---|---|---|---|---|---|---|---|
Actinomycetes | ||||||||||
Kocuria spp. | + | + | + | − | + | − | + | − | − | |
Dermacoccus nishinomiyaensis | + | + | + | − | + | − | + | − | − | |
Kytococccus sedentarius | + | + | + | − | + | − | + | − | − | |
Micrococcus spp. | + | + | + | + | − | − | − | − | − | |
Streptomyces spp. | + | + | + | + | − | − | − | − | − |
No | Spp. | Zone of Inhibition ± Standard Error of the Mean (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||
S. aureus | S. pseudintermedius | S. heamolyticus | B. cereus | E. coli | P. aeruginosa | K. pneumonia | S. typhi | A. baumanii | ||
1 | Kocuria rosea | 19 ± 0.58 | 31 ± 0.33 | - | 18 ± 0.67 | - | 15 ± 0.58 | - | - | - |
2 | Kocuria rhizophila | 18 ± 0.58 | 20 ± 0.58 | - | 14 ± 0.33 | - | - | - | - | 19 ± 0.67 |
3 | Dermacoccus nishinomiyaensis | 19 ± 0.58 | 16 ± 0.33 | - | 15 ± 0.89 | - | 16 ± 0.67 | - | - | - |
4 | Kytococccus sedentarius | 19 ± 0.58 | 22 ± 0.58 | - | 13 ± 0.33 | - | 16 ± 0.67 | - | - | - |
5 | Kocuria varians | - | 16 ± 0.67 | - | 16 ± 0.58 | - | - | - | - | - |
6 | Kocuria kristinae | - | 15 ± 0.58 | - | 14 ± 0.89 | - | 12 ± 0.89 | - | - | - |
7 | Micrococcus luteus | - | 18 ± 0.33 | - | 17 ± 0.89 | 16 ± 0.58 | - | 17 ± 0.33 | 17 ± 0.89 | 20 ± 0.33 |
8 | Micrococcus laylae | - | 32 ± 0.58 | - | 14 ± 0.33 | 17 ± 0.89 | - | 16 ± 0.58 | 16 ± 0.89 | 21 ± 0.58 |
9 | Streptomyces longisporoflavus | 25 ± 0.33 | 35 ± 0.33 | 23 ± 0.33 | 24 ± 0.33 | 25 ± 0.33 | 26 ± 0.58 | 19 ± 0.33 | 19 ± 0.67 | 24 ± 0.33 |
10 | Streptomyces griseus | - | - | - | 15 ± 0.33 | - | 14 ± 0.58 | 14 ± 0.89 | - | - |
Growth Conditions | Zone of Inhibition ± Standard Error of the Mean (mm) | ||
---|---|---|---|
Kocuria rosea | Micrococcus luteus | Streptomyces longisporoflavus | |
Carbon Source | |||
Starch 1% | 18 ± 0.58 | 16 ± 0.33 | 23 ± 0.89 |
Fructose 1% | 18 ± 0.33 | 14 ± 0.58 | 15 ± 0.67 |
Glucose 1% | 14 ± 0.33 | 23 ± 0.58 | 14 ± 0.58 |
Mannitol 1% | 21 ± 0.58 | 16 ± 0.33 | 18 ± 0.89 |
Sucrose 1% | 13 ± 0.67 | 21 ± 0.33 | 17 ± 0.89 |
Mannitol 0.5% | 19 ± 0.58 | - | - |
Mannitol 1.5% | 24 ± 0.33 | - | - |
Mannitol 2% | 26 ± 0.58 | - | - |
Mannitol 2.5% | 28 ± 0.33 | - | - |
Mannitol 3% | 25 ± 0.33 | - | - |
Glucose 0.5% | - | 24 ± 0.58 | - |
Glucose 1.5% | - | 22 ± 0.67 | - |
Glucose 2% | - | 18 ± 0.33 | - |
Glucose 2.5% | - | 17 ± 0.89 | - |
Starch 0.5% | - | - | 21 ± 0.89 |
Starch 1.5% | - | - | 22 ± 0.89 |
Starch 2% | - | - | 21 ± 0.67 |
Starch 2.5% | - | - | 20 ± 0.67 |
Nitrogen Source | |||
Peptone 0.2% | 14 ± 0.58 | 23 ± 0.33 | 25 ± 0.58 |
Potassium nitrate 0.2% | 18 ± 0.33 | 15 ± 0.33 | 23 ± 0.33 |
Ammonium sulfate 0.2% | 29 ± 0.33 | 20 ± 0.58 | 22 ± 0.89 |
Ammonium nitrate 0.2% | 18 ± 0.33 | 17 ± 0.89 | 21 ± 0.89 |
Sodium nitrate 0.2% | 17 ± 0.33 | 14 ± 0.33 | 20 ± 0.58 |
Calcium nitrate 0.2% | 20 ± 0.58 | 16 ± 0.58 | 18 ± 0.58 |
Ammonium sulfate 0.1% | 26 ± 0.33 | - | - |
Ammonium sulfate 0.15% | 27 ± 0.33 | - | - |
Ammonium sulfate 0.25% | 27 ± 0.33 | - | - |
Ammonium sulfate 0.3% | 25 ± 0.58 | - | - |
Peptone 0.5% | - | 23 ± 0.58 | 26 ± 0.67 |
Peptone 1% | - | 26 ± 0.89 | 28 ± 0.58 |
Peptone 1.5% | - | 24 ± 0.89 | 24 ± 0.58 |
Peptone 2% | - | 22 ± 0.89 | 23 ± 0.33 |
Peptone 2.5% | - | 21 ± 0.89 | 22 ± 0.33 |
pH | |||
pH 5 | 12 ± 0.58 | 22 ± 0.58 | 21 ± 0.89 |
pH 6 | 15 ± 0.89 | 23 ± 0.33 | 25 ± 0.67 |
pH 7 | 23 ± 0.89 | 28 ± 0.67 | 27 ± 0.33 |
pH 8 | 19 ± 0.33 | 26 ± 0.33 | 26 ± 0.67 |
pH 9 | 17 ± 0.33 | 23 ± 0.33 | 24 ± 0.67 |
pH 10 | 16 ± 0.89 | 21 ± 0.33 | 22 ± 0.89 |
pH 11 | 10 ± 0.89 | 20 ± 0.89 | 18 ± 0.67 |
Inoculum Concentration | |||
Starting inoculum 0.01% | NA | NA | NA |
Starting inoculum 0.1% | NA | NA | NA |
Starting inoculum 2% | 24 ± 0.33 | 25 ± 0.33 | 26 ± 0.33 |
Starting inoculum 5% | 16 ± 0.58 | 22 ± 0.89 | 25 ± 0.58 |
Starting inoculum 10% | 11 ± 0.33 | 19 ± 0.89 | 24 ± 0.67 |
Starting inoculum 15% | 10 ± 0.89 | 17 ± 0.67 | 22 ± 0.67 |
Incubation Period | |||
Incubation period 2 days | NA | NA | NA |
Incubation period 3 days | 8 ± 0.33 | 12 ± 0.58 | 16 ± 0.58 |
Incubation period 4 days | 10 ± 0.89 | 14 ± 0.89 | 21 ± 0.89 |
Incubation period 5 days | 17 ± 0.33 | 23 ± 0.89 | 22 ± 0.89 |
Incubation period 6 days | 18 ± 0.58 | 25 ± 0.33 | 24 ± 0.67 |
Incubation period 7 days | 18 ± 0.58 | 27 ± 0.58 | 25 ± 0.89 |
Incubation period 8 days | 20 ± 0.58 | - | 28 ± 0.58 |
Incubation period 9 days | 22 ± 0.58 | - | - |
Incubation period 10 days | 23 ± 0.33 | - | - |
Incubation period 11 days | 26 ± 0.33 | - | - |
Incubation Temperature | |||
Incubation temperature 25 °C | 21 ± 0.33 | 22 ± 0.89 | 24 ± 0.58 |
Incubation temperature 30 °C | 28 ± 0.58 | 25 ± 0.89 | 28 ± 0.58 |
Incubation temperature 35 °C | 23 ± 0.89 | 19 ± 0.58 | 25 ± 0.89 |
Incubation temperature 40 °C | 16 ± 0.89 | 15 ± 0.67 | 17 ± 0.89 |
Optimal Conditions for Secondary Metabolite Production | ||||||
---|---|---|---|---|---|---|
Carbon Source | Nitrogen Source | pH | Inoculum Size | Incubation Period | Incubation Temperature | |
Basal conditions | Starch 1% | Potassium nitrate 0.2% | 7 | 1% | 7–21 days | 30 °C |
Kocuria rosea | Mannitol 2.5% | Ammonium sulfate 0.2% | 7 | 2% | 11 days | 30 °C |
Micrococcus luteus | Glucose 0.5% | Peptone 1% | 7 | 2% | 7 days | 30 °C |
Streptomyces longisporoflavus | Starch 1% | Peptone 1% | 7 | 2% | 8 days | 30 °C |
No | Spp. | Concentration of the Secondary Metabolites (Crude Extract) (mg/mL) | Zone of Inhibition ± Standard Error of the Mean (mm) | |||
---|---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||
S. aureus | B. cereus | E. coli | S. typhi | |||
1 | Kocuria rosea | 0.0625 | - | - | - | - |
0.125 | - | - | - | - | ||
0.25 | 28 ± 0.67 | 26 ± 0.33 | - | - | ||
2 | Micrococcus luteus | 0.0625 | - | - | - | - |
0.125 | - | 17 ± 1.15 | - | - | ||
0.25 | - | 25 ± 0.58 | 30 ± 0.33 | 25 ± 1.15 | ||
3 | Streptomyces longisporoflavus | 0.0625 | - | - | - | - |
0.125 | 15 ± 0.66 | 13 ± 1.15 | - | - | ||
0.25 | 29 ± 0.17 | 29 ± 0.58 | 28 ± 0.17 | 26 ± 0.17 | ||
Erythromycin | 0.25 | 33 ± 1.15 | 33 ± 1.15 | 34 ± 1.15 | 33 ± 2.13 |
No. | Secondary Metabolites Extracted from the Studied Isolates (Crude Extract) | Measured Value (µg/mL) | Gram-Positive Bacteria | Gram-Negative Bacteria | ||
---|---|---|---|---|---|---|
S. aureus | B. cereus | E. coli | S. typhi | |||
1 | Kocuria rosea | MIC | 187.5 | 187.5 | ND | ND |
MBC | 500 | 500 | ND | ND | ||
MIC index (MIC/MBC) | 2.7 | 2.7 | ND | ND | ||
2 | Micrococcus luteus | MIC | ND | 93.75 | 187.5 | 187.5 |
MBC | ND | 500 | 500 | 1000 | ||
MIC index (MIC/MBC) | ND | 5.3 | 2.7 | 5.3 | ||
3 | Streptomyces longisporoflavus | MIC | 93.75 | 93.75 | 187.5 | 187.5 |
MBC | 1000 | 500 | 500 | 1000 | ||
MIC index (MIC/MBC) | 10.7 | 5.3 | 2.7 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaini, H.K.; Khalil, M.I.; El Hajj, R. The Antimicrobial Potential of Actinomycetes Isolated from Marine Soils in Tyre City Beach, Lebanon: A Promising Source of Novel Bioactive Metabolites. Appl. Microbiol. 2025, 5, 27. https://doi.org/10.3390/applmicrobiol5010027
Dhaini HK, Khalil MI, El Hajj R. The Antimicrobial Potential of Actinomycetes Isolated from Marine Soils in Tyre City Beach, Lebanon: A Promising Source of Novel Bioactive Metabolites. Applied Microbiology. 2025; 5(1):27. https://doi.org/10.3390/applmicrobiol5010027
Chicago/Turabian StyleDhaini, Hassan K., Mahmoud I. Khalil, and Rana El Hajj. 2025. "The Antimicrobial Potential of Actinomycetes Isolated from Marine Soils in Tyre City Beach, Lebanon: A Promising Source of Novel Bioactive Metabolites" Applied Microbiology 5, no. 1: 27. https://doi.org/10.3390/applmicrobiol5010027
APA StyleDhaini, H. K., Khalil, M. I., & El Hajj, R. (2025). The Antimicrobial Potential of Actinomycetes Isolated from Marine Soils in Tyre City Beach, Lebanon: A Promising Source of Novel Bioactive Metabolites. Applied Microbiology, 5(1), 27. https://doi.org/10.3390/applmicrobiol5010027