The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Study of Biofilm Formation by Selected Salmonella Strains
2.1.1. Bacterial Culture
2.1.2. Biofilm Formation Assay
2.1.3. Screening of the Biofilm-Associated Genes
2.1.4. Expression of the Curli and Cellulose Assay
2.2. In silico Study of Biofilm-Associated Genes Across a Range of Salmonella Genomes
2.3. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Study of Biofilm Formation by Selected Salmonella Strains
3.2. In Silico Study of Biofilm-Associated Genes Across a Range of Salmonella Genomes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grimont, P.A.; Weill, F.X. Antigenic formulae of the Salmonella serovars. In WHO Collaborating Centre for Reference and Research on Salmonella; Institut Pasteur: Paris, France, 2007; Volume 9, pp. 1–66. [Google Scholar]
- Gong, J.; Zhuang, L.; Zhu, C.; Shi, S.; Zhang, D.; Zhang, L.; Yu, Y.; Dou, X.; Xu, B.; Wang, C. Loop-mediated isothermal amplification of the sefA gene for rapid detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. Foodborne Pathog. Dis. 2016, 13, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.F.; Zhou, Z.; Sergeant, M.J.; Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef] [Green Version]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A.A. comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Underthun, K.; De, J.; Gutierrez, A.; Silverberg, R.; Schneider, K.R. Survival of Salmonella and Escherichia coli in two different soil types at various moisture levels and temperatures. J. Food Prot. 2018, 81, 150–157. [Google Scholar] [CrossRef]
- Cadena, M.; Kelman, T.; Marco, M.L.; Pitesky, M. Understanding antimicrobial resistance (AMR) profiles of Salmonella biofilm and planktonic bacteria challenged with disinfectants commonly used during poultry processing. Foods 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lippin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Nadell, C.D.; Xavier, J.B.; Foster, K.R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2008, 33, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Ghigo, J.M. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001, 412, 442–445. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Z.; Liu, Z.; Li, D.; Liu, Z.; Dong, X.; Yan, S. Research Progress of Salmonella Pathogenicity Island. Int. J. Biol. Sci. 2023, 2, 7–11. [Google Scholar] [CrossRef]
- Kombade, S.; Kaur, N. Pathogenicity island in Salmonella. In Salmonella spp.—A Global Challenge; IntechOpen: London, UK, 2021. [Google Scholar]
- Zhao, S.; Li, C.; Hsu, C.H.; Tyson, G.H.; Strain, E.; Tate, H.; Tran, T.T.; Abbott, J.; McDermott, P.F. Comparative genomic analysis of 450 strains of Salmonella enterica isolated from diseased animals. Genes 2020, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Sarjit, A.; Dykes, G.A. Antimicrobial activity of trisodium phosphate and sodium hypochlorite against Salmonella biofilms on abiotic surfaces with and without soiling with chicken juice. Food Control 2017, 73, 1016–1022. [Google Scholar] [CrossRef]
- Shastry, R.P.; Ghate, S.D.; Banerjee, S. Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables. Biocatal. Agric Biotechnol. 2021, 38, 102202. [Google Scholar] [CrossRef]
- European Food Safety Authority and European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar]
- Simm, R.; Ahmad, I.; Rhen, M.; Le Guyon, S.; Römling, U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol. 2014, 9, 1261–1282. [Google Scholar] [CrossRef]
- Desai, P.T.; Porwollik, S.; Long, F.; Cheng, P.; Wollam, A.; Clifton, S.W.; Weinstock, G.M.; McClelland, M. Evolutionary genomics of Salmonella enterica subspecies. MBio 2013, 4, e00579-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathyabama, S.; Kaur, G.; Arora, A.; Verma, S.; Mubin, N.; Mayilraj, S.; Agrewala, J.N. Genome sequencing, annotation and analysis of Salmonella enterica sub species salamae strain DMA-1. Gut Pathog. 2014, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.X.; Zhu, S.L.; Wang, X.Y.; Feng, Y.; Li, B.; Li, Y.G.; Johnston, R.N.; Liu, G.R.; Zhou, J.; Liu, S.L. Complete genome sequence of Salmonella enterica subspecies arizonae str. RKS2983. Stand. Genom. Sci. 2015, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Wong, S.; Dykes, G. Salmonella associated with captive and wild lizards in Malaysia. Herpetol. Notes 2014, 7, 145–147. [Google Scholar]
- Perera, A.; Clarke, C.M.; Dykes, G.A.; Fegan, N. Characterization of Shiga toxigenic Escherichia coli O157 and Non-O157 isolates from ruminant feces in Malaysia. Biomed. Res. Int. 2015, 11, 2015. [Google Scholar]
- Lee, K.; Iwata, T.; Shimizu, M.; Nakadai, A.; Hirota, Y.; Hayashidani, H. A novel multiplex PCR assay for Salmonella subspecies identification. J. Appl. Microbiol. 2009, 107, 805–811. [Google Scholar] [CrossRef]
- Mireles, J.R.; Toguchi, A.; Harshey, R.M. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 2001, 183, 5848–5854. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Feng, Z.; Sun, H.; Zhang, R.; Qin, T.; Peng, D. Biofilm-formation-related Genes csgD and bcsA promote the vertical transmission of Salmonella Enteritidis in chicken. Front. Vet. Sci. 2021, 7, 625049. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; Kiess, A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J. Appl. Poult. Res. 2021, 30, 100195. [Google Scholar] [CrossRef]
- Stepanović, S.; Ćirković, I.; Ranin, L.; Svabić-Vlahović, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef]
- Baumler, A.J.; Gilde, A.J.; Tsolis, R.M.; van der Velden, A.W.; Ahmer, B.M.M.; Heffron, F. Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J. Bacteriol. 1997, 179, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Townsend, S.M.; Kramer, N.E.; Edwards, R.; Baker, S.; Hamlin, N.; Simmonds, M.; Stevens, K.; Maloy, S.; Parkhill, J.; Dougan, G.; et al. Salmonela enterica serovar Typhi possess a unique repertoire of fimbrial gene sequences. Infect. Immun. 2001, 69, 2891–2901. [Google Scholar] [CrossRef] [Green Version]
- Bäumler, A.J.; Tsolis, R.M.; Bowe, F.A.; Kusters, J.G.; Hoffman, S.; Heffron, F. The pef fimbrial operon of Salmonella Typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 1996, 64, 61–68. [Google Scholar] [CrossRef]
- Barak, J.D.; Jahn, C.E.; Gibson, D.L.; Charkowski, A.O. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 2007, 20, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Villareal, J.M.; Hernandez-Lucas, I.; Gil, F.; Calderon, I.L.; Calva, E.; Saavedra, C.P. cAMP receptor protein (CRP) positively regulates the yihU-yshA operon in Salmonella enterica serovar Typhi. Microbiology 2011, 157, 636–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcova, M.; Hradecka, H.; Karpiskova, R.; Rychlik, I. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: Identification of a new colony morphology type and the role of SGI1 in biofilm formation. Vet. Microbiol. 2008, 129, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Bokranz, W.; Wang, X.; Tschäpe, H.; Römling, U. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 2005, 54, 1171–1182. [Google Scholar] [CrossRef]
- Roy, P.K.; Song, M.G.; Park, S.Y. Impact of quercetin against Salmonella Typhimurium biofilm formation on food–contact surfaces and molecular mechanism pattern. Foods 2022, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Liu, Y.; Fan, L.; Chen, C.; Yang, Z.; Jiao, X.A. Biofilm formation, antibiotic resistance, and genome sequencing of a unique isolate Salmonella Typhimurium M3. Qual. Assur. Saf. Crops 2023, 15, 114–122. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olsen, R.; Overbeek, R.; Parello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Klimke, W.; Agarwala, R.; Badretdin, A.; Chetvernin, S.; Ciufo, S.; Fedorov, B.; Kiryutin, B.; O’Neill, K.; Resch, W.; Resenchuk, S.; et al. The national center for biotechnology information’s protein clusters database. Nucleic Acids Res. 2009, 37, D216–D223. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumler, A.J.; Tsolis, R.M.; Ficht, T.A.; Adams, L.G. Evolution of host adaptation in Salmonella enterica. Infect. Immun. 1998, 66, 4579–4587. [Google Scholar] [CrossRef] [PubMed]
- Avila-Novoa, M.G.; Guerrero-Medina, P.J.; Navarrete-Sahagún, V.; Gómez-Olmos, I.; Velázquez-Suárez, N.Y.; De la Cruz-Color, L.; Gutiérrez-Lomelí, M. Biofilm formation by multidrug-resistant serotypes of Salmonella isolated from fresh products: Effects of nutritional and environmental conditions. Appl. Sci. 2021, 11, 3581. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int. J. Food Microbiol. 2016, 238, 63–77. [Google Scholar] [CrossRef]
- Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.; Gamazo, C.; Penadés, J.R.; Lasa, I. BapA, a large secreted protein required for biofilm formation and the host colonization of Salmonella enterica serovar Enteritidis. Mol. Microbiol. 2005, 58, 1322–1339. [Google Scholar] [CrossRef]
- Solano, C.; Garcia, B.; Valle, J.; Berasain, C.; Ghigo, J.; Gamazo, C.; Lasa, I. Genetic analysis of Salmonella enteritidis biofilm formation: Critical role of cellulose. Mol. Microbiol. 2002, 43, 793–808. [Google Scholar] [CrossRef]
- Ledeboer, N.A.; Frye, J.G.; McClelland, M.; Jones, B.D. Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect. Immun. 2006, 74, 3156–3169. [Google Scholar] [CrossRef] [Green Version]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; De Keersmaecker, S.C. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Mohamed, M.; Mohamed, R.; Gharieb, R.; Amin, M.; Ahmed, H. Antimicrobial resistance, virulence associated genes and biofilm formation of salmonella species isolated from different sources. Zagazig Vet. J. 2021, 49, 208–221. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Ajariyakhajorn, K.; Koowatananukul, C.; Wannaprasat, W.; Khemtong, S.; Samngamnim, S. Antimicrobial resistance and virulence genes in Salmonella enterica isolates from dairy cows. Foodborne Pathog. Dis. 2010, 7, 63–69. [Google Scholar] [CrossRef]
- Ahmed, H.A.; El-Hofy, F.I.; Shafik, S.M.; Abdelrahman, M.A.; Elsaid, G.A. Characterization of virulence-associated genes, antimicrobial resistance genes, and class 1 integrons in Salmonella enterica serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog. Dis. 2016, 13, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Park, C.J.; Andam, C.P. Distinct but intertwined evolutionary histories of multiple Salmonella enterica subspecies. MSystems 2020, 5, e00515-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, T.W.; Goulter, R.M.; McMeekin, T.; Dykes, G.A.; Fegan, N. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol. 2009, 26, 853–859. [Google Scholar] [CrossRef]
- Duffy, L.L.; Dykes, G.A.; Fegan, N. A review of the ecology, colonization and genetic characterization of Salmonella enterica serovar Sofia, a prolific but avirulent poultry serovar in Australia. Food Res. Int. 2012, 45, 770–779. [Google Scholar] [CrossRef]
- Römling, U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell. Mol. Life Sci. CMLS 2005, 62, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Römling, U.; Rohde, M.; Olsén, A.; Normark, S.; Reinköster, J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella Typhimurium regulates at least two independent pathways. Mol. Microbiol. 2000, 36, 10–23. [Google Scholar] [CrossRef]
- Jain, S.; Chen, J. Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J. Food Prot. 2007, 70, 2473–2479. [Google Scholar] [CrossRef]
- Fàbrega, A.; Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Li, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhu, X.; Bie, X. Effect of the luxS gene on biofilm formation and antibiotic resistance by Salmonella serovar Dublin. Food Res. Int. 2018, 107, 385–393. [Google Scholar] [CrossRef]
- Bhardwaj, D.K.; Taneja, N.K.; Shivaprasad, D.P.; Chakotiya, A.; Patel, P.; Taneja, P.; Sachdev, D.; Gupta, S.; Sanal, M.G. Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products. Int. J. Food Microbiol. 2021, 336, 108899. [Google Scholar] [CrossRef]
- Chin, K.C.; Taylor, T.D.; Hebrard, M.; Anbalagan, K.; Dashti, M.G.; Phua, K.K. Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. BMC Genom. 2017, 18, 836. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Lee, Y.J. Antimicrobial resistance and virulence genes of Salmonella isolates from chicken industry. Prev. Vet. Med. 2017, 41, 189–192. [Google Scholar] [CrossRef]
- Suez, J.; Porwollik, S.; Dagan, A.; Marzel, A.; Schorr, Y.I.; Desai, P.T.; Agmon, V.; McClelland, M.; Rahav, G.; Gal-Mor, O. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS ONE 2013, 8, e58449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia coli: From biofilm formation to new antibiofilm strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Eran, Z.; Akçelik, M.; Yazıcı, B.C.; Özcengiz, G.; Akçelik, N. Regulation of biofilm formation by marT in Salmonella Typhimurium. Mol. Biol. Rep. 2020, 47, 5041–5050. [Google Scholar] [CrossRef]
- Niba, E.T.; Naka, Y.; Nagase, M.; Mori, H.; Kitakawa, M. A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res. 2007, 14, 237–246. [Google Scholar] [CrossRef]
- Zeiner, S.A.; Dwyer, B.E.; Clegg, S. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect. Immun. 2012, 80, 3289–3296. [Google Scholar] [CrossRef] [Green Version]
- Akcelik, N.; Akcelik, M. Characteristics and regulation of biofilm formation In. Postępy Mikrobiol.-Adv. Microbiol. 2021, 60, 113–119. [Google Scholar]
- Cui, L.; Wang, X.; Huang, D.; Zhao, Y.; Feng, J.; Lu, Q.; Pu, Q.; Wang, Y.; Cheng, G.; Wu, M.; et al. CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens 2020, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Sarjit, A.; Ravensdale, J.T.; Coorey, R.; Fegan, N.; Dykes, G.A. Survival of Salmonella under heat stress is associated with the presence/absence of CRISPR Cas genes and iron levels. Curr. Microbiol. 2021, 78, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Broadbent, S.E.; Harris, S.R.; Thomson, N.R.; van der Woude, M.W. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLoS Genet. 2013, 9, e1003568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, C.; Kaniuk, N.; Frirdich, E. Molecular insights into the assembly and diversity of the outer core oligosaccharide in lipopolysaccharides from Escherichia coli and Salmonella. J. Endotoxin Res. 2003, 9, 244–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.F.; Shang, K.; Wei, B.; Lee, Y.J.; Park, J.Y.; Jang, H.K.; Cha, S.Y.; Kang, M. Evaluation of safety and protective efficacy of a waaJ and spiC double deletion Korean epidemic strain of Salmonella enterica serovar Gallinarum. Front. Vet. Sci. 2021, 8, 756123. [Google Scholar] [CrossRef] [PubMed]
- Dehinwal, R.; Cooley, D.; Rakov, A.V.; Alugupalli, A.S.; Harmon, J.; Cunrath, O.; Vallabhajosyula, P.; Bumann, D.; Schifferli, D.M. Increased production of outer membrane vesicles by Salmonella interferes with complement-mediated innate immune attack. Mbio 2021, 12, e00869-21. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Yang, Z.; Pu, M.; Peti, W.; Wood, T.K. Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ. Microbiol. 2011, 13, 631–642. [Google Scholar] [CrossRef] [Green Version]
Gene | Sequence | Annealing Temperature (°C) | Size of Amplicons (bp) | Effect | Reference |
---|---|---|---|---|---|
lpfE | 5′-TTTGATGCCAGCGTGTTTACTG-3′ 5′-AGTAGACCACCAGCAGAGGGAAAG-3′ | 50 | 525 | Codes for long polar fimbriae that aid in the colonization of host intestinal wall | Bäumler et al. [29] |
agfA | 5′-TGCAAAGCGATGCCCGTAAATC-3′ 5′-TTAGCGTTCCACTGGTCGATGGTG-3′ | 61 | 151 | Codes for curli adhesins that facilitate autoaggregation during biofilm formation | Bäumler et al. [29] |
tcfA | 5′-CATTTATTCTCAGGGGGAGCG-3′ 5′-CATCCTCTTTATCTGTTGCCACG-3′ | 51 | 1070 | Typhi specific fimbriae required for virulence in humans | Townsend et al. [30] |
bcfA | 5′-TCCCCCGGGGATACTACAACCGTCACTGG-3′ 5′-GCGGATAAATCACCCTGGTC-3′ | 57 | 698 | Codes for fimbriae involved in colonization of bovine gastrointestinal colonization | Townsend et al. [30] |
pefA | 5′-GGGAATTCTTGCTTCCATTATTGCACTGGG-3′ 5′-TCTGTCGACGGGGGATTATTTGTAAGCCACT-3′ | 58 | 526 | Encodes for fimbriae necessary for adhesion to the murine gastrointestinal tract | Bäumler et al. [31] |
bcsA | 5′-GTCCCACATATCGTTACCGTCCTG-3′ 5′-CGCCGCATCATTTCTTCTCCC-3′ | 55 | 119 | Plays a role in the production of extracellular cellulose required for biofilm formation | Barak et al. [32] |
yshA | 5′-CGGGATCCTTTTCTCTTGTATCGCCTTC-3’ 5′-CCCAAGCTTGAAGAAATACTTCGCCCCGA-3′ | 57 | 1000 | Involved in the formation and secretion of extracellular polysaccharides required for biofilm formation. Especially under stress conditions. | Villareal et al. [33] |
Strain Name | Source | Subspecies/Species | Genes | Colony Morphology | Curli | Cellulose | Total Genes (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lpfE | agfA | bcsA | yshA | bcfA | pefA | tcfA | |||||||
ATCC14028 | - | enterica | + | + | + | + | + | + | - | rdar | √ | √ | 85.7 |
ATCC13076 | - | enterica | + | + | + | + | + | + | - | rdar | √ | √ | 85.7 |
M11 | Spinach | enterica | + | + | + | + | + | - | - | saw | × | × | 71.4 |
M12 | Spinach | enterica | + | + | + | + | + | - | - | pdar | × | √ | 71.4 |
M13 | Spinach | enterica | + | + | + | + | + | - | - | pdar | × | √ | 71.4 |
M15 | Cabbage | enterica | + | + | + | + | + | - | + | rdar | √ | √ | 85.7 |
M16 | Spinach | enterica | - | + | + | + | + | - | - | pdar | × | √ | 57.1 |
R11 | Rural Lizard | enterica | - | + | + | + | + | - | + | pdar | × | √ | 71.4 |
U30 | Urban Lizard | enterica | + | + | + | + | + | - | - | pdar | × | √ | 71.4 |
U5 | Urban Lizard | enterica | - | + | + | - | + | + | - | rdar | √ | √ | 57.1 |
R32 | Rural Lizard | arizonae | - | + | + | - | + | + | - | pdar | × | √ | 57.1 |
R36 | Rural Lizard | arizonae | - | + | + | - | + | - | - | rdar | √ | √ | 42.9 |
U3 | Urban Lizard | arizonae | - | + | + | - | + | - | - | saw | × | × | 42.9 |
R1 | Rural Lizard | diarizonae | - | + | + | - | + | - | - | pdar | × | √ | 42.9 |
R2 | Rural Lizard | diarizonae | - | + | + | - | + | + | - | bdar | √ | - | 42.9 |
U68 | Urban Lizard | diarizonae | - | + | + | - | + | - | - | rdar | √ | √ | 42.9 |
B3 | Cow | S. bongori | + | + | + | + | + | - | - | rdar | √ | √ | 71.4 |
M3 | Cabbage | indica | - | + | - | - | + | - | - | pdar | × | √ | 28.6 |
M4 | Lettuce | indica | - | - | - | - | - | - | - | pdar | × | √ | 0.0 |
U56 | Urban Lizard | indica | - | + | + | - | + | - | - | pdar | × | √ | 42.9 |
Subspecies/ Species | n | Biofilm-Associated Gene | |||||||||||||||||||||||||||||
bssR | yciZ | ynfC | bssS | ygjK | gatC | wcaM | narG | fimF | fimG | fimH | csgA | csgB | csgE | cspA | bapA | csgD | cspE | adrA | trpE | ompR | rpoS | bcsC | bcsE | ygcB | sirA | hilA | hilC | barA | csrB | ||
S. enterica | 51 | 34 | 42 | 6 | |||||||||||||||||||||||||||
S. arizonae | 70 | 59 | 8 | 55 | 60 | 58 | 3 | 53 | 56 | 34 | 66 | 59 | 62 | 30 | 50 | 59 | 59 | 60 | 66 | 64 | 53 | 53 | 55 | 53 | 57 | 57 | 53 | 58 | 50 | ||
S. diarizonae | 70 | 2 | 1 | 2 | 66 | ||||||||||||||||||||||||||
S. houtenae | 51 | 4 | 50 | 5 | |||||||||||||||||||||||||||
S. indica | 21 | 1 | |||||||||||||||||||||||||||||
S. salamae | 52 | 30 | 24 | ||||||||||||||||||||||||||||
S. bongori | 8 | ||||||||||||||||||||||||||||||
Subspecies/Species | n | Biofilm-associated gene | |||||||||||||||||||||||||||||
yjcC | fabR | flgK | rfbA | nusB | waaG | rfaB | pnp | waaL | waaJ | waaK | waaB | waaO | bcsA | bcsB | bcsZ | lpfE | csgC | yshA | luxS | csrA | sdiA | bdcA | pefA | pefC | marT | pagC | |||||
S. enterica | 51 | 45 | 8 | 8 | |||||||||||||||||||||||||||
S. arizonae | 70 | 65 | 58 | 55 | 60 | 55 | 56 | 64 | 56 | 57 | 5 | 64 | 62 | 59 | 59 | 55 | 3 | 55 | 51 | 57 | 54 | 57 | 3 | 1 | 1 | 4 | 67 | ||||
S. diarizonae | 70 | 69 | 1 | 69 | 3 | 69 | 3 | 66 | |||||||||||||||||||||||
S. houtenae | 51 | 5 | 3 | 3 | 5 | ||||||||||||||||||||||||||
S. indica | 21 | ||||||||||||||||||||||||||||||
S. salamae | 52 | 33 | 51 | 1 | 51 | 50 | 51 | 51 | 51 | 48 | 49 | ||||||||||||||||||||
S. bongori | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarjit, A.; Cheah, Y.; Dykes, G.A. The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study. Appl. Microbiol. 2023, 3, 841-855. https://doi.org/10.3390/applmicrobiol3030058
Sarjit A, Cheah Y, Dykes GA. The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study. Applied Microbiology. 2023; 3(3):841-855. https://doi.org/10.3390/applmicrobiol3030058
Chicago/Turabian StyleSarjit, Amreeta, Yi Cheah, and Gary A. Dykes. 2023. "The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study" Applied Microbiology 3, no. 3: 841-855. https://doi.org/10.3390/applmicrobiol3030058
APA StyleSarjit, A., Cheah, Y., & Dykes, G. A. (2023). The Basis for Variations in the Biofilm Formation by Different Salmonella Species and Subspecies: An In Vitro and In Silico Scoping Study. Applied Microbiology, 3(3), 841-855. https://doi.org/10.3390/applmicrobiol3030058