Genetically Distinct Rice Lines for Specific Characters as Revealed by Gene-Associated Average Pairwise Dissimilarity
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Published Rice Genomic Data
2.2. Data Processing
2.3. APD Analysis
3. Results
3.1. Variability in Identified SNPs and Indels
3.2. Variability of APD Estimates for Three Sample Groups
3.3. Four Sets of Most Genetically Distinct Rice Lines
4. Discussion
5. Conclusive Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardo, R.N. Essentials of Plant Breeding; Stemma Press: London, UK, 2014. [Google Scholar]
- Allier, A.; Teyssèdre, S.; Lehermeier, C.; Moreau, L.; Charcosset, A. Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genom. 2020, 21, 349. [Google Scholar] [CrossRef]
- Allard, R.W. Principles of Plant Breeding, 2nd ed.; John Wiley, Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 22, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Díez, M.J.; Fita, A.; Herraiz, F.J.; Rodríguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Wang, C.; Hu, S.; Gardner, C.; Lübberstedt, T. Emerging avenues for utilization of exotic germplasm. Trends Plant Sci. 2017, 22, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, A.W.; Kale, S.M.; Liu, F.; Zhao, Y.; Philipp, N.; Rembe, M.; Jiang, Y.; Beukert, U.; Serfling, A.; Himmelbach, A.; et al. Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat. Genet. 2022, 54, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Meints, B.; Hayes, P. Introgression breeding in barley: Perspectives and case studies. Front. Plant Sci. 2020, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Rebetzke, G.; Mackay, I.; Bentley, A.R.; Reynolds, M.P. Pre-breeding strategies. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Guo, T.; Zhu, C.; Wu, Y.; Mitchell, S.E.; Roozeboom, K.L.; Wang, D.; Wang, M.L.; Pederson, G.A.; et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2016, 2, 16150. [Google Scholar] [CrossRef]
- Li, Y.; Shi, F.; Lin, Z.; Robinson, H.; Moody, D.; Rattey, A.; Godoy, J.; Mullan, D.; Keeble-Gagnere, G.; Hayden, M.J.; et al. Benefit of introgression depends on level of genetic trait variation in cereal breeding programmes. Front. Plant Sci. 2022, 13, 786452. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet. Resour. 2006, 4, 117–124. [Google Scholar] [CrossRef]
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Yang, M.H.; Fu, Y.B. AveDissR: An R function for assessing genetic distinctness and genetic redundancy. Appl. Plant Sci. 2017, 5, 1700018. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.W.; Dong, Y.; Horbach, C.; Fu, Y.B. Genotyping-by-sequencing for plant genetic diversity analysis: A lab guide for SNP genotyping. Diversity 2014, 6, 665–680. [Google Scholar] [CrossRef]
- Milner, S.G.; Jost, M.; Taketa, S.; Mazón, E.R.; Himmelbach, A.; Oppermann, M.; Weise, S.; Knüpffer, H.; Basterrechea, M.; König, P.; et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 2019, 51, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Payne, T.; Marshall, D.; et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 2020, 11, 4572. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Roorkiwal, M.; Sun, S.; Bajaj, P.; Chitikineni, A.; Thudi, M.; Singh, N.P.; Du, X.; Upadhyaya, H.D.; Khan, A.W.; et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature 2021, 599, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Fingerprinting soybean germplasm and its utility in genomic research. G3 Genes Genomes Genet. 2015, 5, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B. Assessing genetic distinctness and redundancy of plant germplasm conserved ex situ based on published genomic SNP data. Plants 2023, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebortarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; McCarthy, S.A.; HipSci Consortium; Durbin, R. A method for checking genomic integrity in cultured cell lines from SNP genotyping data. PLoS ONE 2016, 11, e0155014. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Neph, S.; Kuehn, M.S.; Reynolds, A.P.; Haugen, E.; Thurman, R.E.; Johnson, A.K.; Rynes, E.; Maurano, M.T.; Vierstra, J.; Thomas, S.; et al. BEDOPS: High-performance genomic feature operations. Bioinformatics 2012, 28, 1919–1920. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 22 September 2024).
- Field, M.A.; Burgio, G.; Chuah, A.; Shekaili, J.A.; Hassan, B.; Sukaiti, N.A.; Foote, S.J.; Cook, M.C.; Andrews, T.D. Recurrent miscalling of missense variation from short-read genome sequence data. BMC Genom. 2019, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Steyaert, W.; Haer-Wigman, L.; Pfundt, R.; Hellebrekers, D.; Steehouwer, M.; Hampstead, J.; de Boer, E.; Stegmann, A.; Yntema, H.; Kamsteeg, E.-J.; et al. Systematic analysis of paralogous regions in 41,755 exomes uncovers clinically relevant variation. Nat. Commun. 2023, 14, 6845. [Google Scholar] [CrossRef]
Chromosome | Sequence Length | SNP or Indel | SNP Count | |||
---|---|---|---|---|---|---|
Data Set | Or Contig Count | In Base Pair | Count | 20% Missing | 10% Missing | No Missing |
gaSNPs for heat tolerance | 56 | 8,429,490 | 2,672,786 | 183,883 | 183,883 | 24,868 |
gaSNPs for cold tolerance | 79 | 11,855,409 | 3,685,200 | 283,772 | 218,133 | 26,435 |
gaSNPs for fertility | 23 | 3,542,347 | 1,200,284 | 183,883 | 111,422 | 24,453 |
gaSNPs for seed size | 44 | 6,528,374 | 2,107,785 | 221,124 | 179,903 | 29,955 |
genomeSNPs | 12 | 217,331,824 | 74,136,931 | 27,556 | 6630 | 36 |
neutralSNPs | 12 | 17,873 | ||||
genicSNPs | 12 | 9683 | ||||
indels | 12 | 2,354,934 | 445,188 | 438,466 | 386,361 |
SNP | APD Estimates | ||||
---|---|---|---|---|---|
Count | Mean | Standard Deviation | Minimum | Maximum | |
All2643 samples | |||||
gaSNPs for heat tolerance | 24,868 | 0.2146 | 0.0156 | 0.1744 | 0.2689 |
gaSNPs for cold tolerance | 26,435 | 0.2139 | 0.0142 | 0.1745 | 0.2598 |
gaSNPs for fertility | 24,453 | 0.2154 | 0.0168 | 0.1804 | 0.2803 |
gaSNPs for seed size | 29,955 | 0.2171 | 0.0152 | 0.1759 | 0.2687 |
genomeSNPs | 27,556 | 0.2790 | 0.0103 | 0.2223 | 0.3063 |
neutralSNPs | 17,873 | 0.2716 | 0.0095 | 0.2178 | 0.2997 |
genicSNPs | 9683 | 0.2878 | 0.0105 | 0.2072 | 0.3143 |
indels | 445,188 | 0.3524 | 0.0260 | 0.3116 | 0.5233 |
Indica1789 samples | |||||
gaSNPs for heat tolerance | 24,556 | 0.2080 | 0.0168 | 0.1713 | 0.2635 |
gaSNPs for cold tolerance | 26,168 | 0.2083 | 0.0153 | 0.1711 | 0.2586 |
gaSNPs for fertility | 24,107 | 0.2083 | 0.0182 | 0.1762 | 0.2788 |
gaSNPs for seed size | 29,578 | 0.2111 | 0.0165 | 0.1731 | 0.2675 |
genomeSNPs | 25,286 | 0.2971 | 0.0054 | 0.2575 | 0.3160 |
neutralSNPs | 16,231 | 0.2911 | 0.0056 | 0.2485 | 0.3116 |
genicSNPs | 8967 | 0.3035 | 0.0059 | 0.2381 | 0.3281 |
indels | 445,176 | 0.3299 | 0.0175 | 0.3087 | 0.5315 |
Japonica854 samples | |||||
gaSNPs for heat tolerance | 24,509 | 0.1980 | 0.0145 | 0.1700 | 0.2503 |
gaSNPs for cold tolerance | 26,095 | 0.1953 | 0.0135 | 0.1669 | 0.2404 |
gaSNPs for fertility | 23,939 | 0.1939 | 0.0156 | 0.1655 | 0.2558 |
gaSNPs for seed size | 29,453 | 0.1961 | 0.0144 | 0.1678 | 0.2461 |
genomeSNPs | 17,444 | 0.2949 | 0.0162 | 0.2584 | 0.3919 |
neutralSNPs | 11,103 | 0.2974 | 0.0151 | 0.2627 | 0.3879 |
genicSNPs | 6025 | 0.3079 | 0.0164 | 0.2675 | 0.4151 |
indels | 193,700 | 0.1414 | 0.0217 | 0.1095 | 0.3152 |
Heat | Cold | Fertility | Seed Size | Genome | Neutral | Genic | Indel | |
---|---|---|---|---|---|---|---|---|
All2643 samples | ||||||||
gaSNPs for heat tolerance | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
gaSNPs for cold tolerance | 0.991 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
gaSNPs for fertility | 0.991 | 0.990 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
gaSNPs for seed size | 0.992 | 0.993 | 0.991 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
genomeSNPs | −0.718 | −0.687 | −0.705 | −0.689 | 0.0001 | 0.0001 | 0.0147 | |
neutralSNPs | −0.737 | −0.707 | −0.727 | −0.710 | 0.982 | 0.0001 | 0.0120 | |
genicSNPs | −0.583 | −0.545 | −0.573 | −0.550 | 0.934 | 0.914 | 0.0525 | |
indels | −0.078 | −0.075 | −0.082 | −0.078 | 0.047 | 0.049 | 0.038 | |
Indica1789 samples | ||||||||
gaSNPs for heat tolerance | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.5087 | |
gaSNPs for cold tolerance | 0.993 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.4754 | |
gaSNPs for fertility | 0.993 | 0.991 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.5437 | |
gaSNPs for seed size | 0.995 | 0.994 | 0.992 | 0.0001 | 0.0001 | 0.0001 | 0.4414 | |
genomeSNPs | −0.428 | −0.423 | −0.432 | −0.430 | 0.0001 | 0.0001 | 0.1904 | |
neutralSNPs | −0.441 | −0.436 | −0.448 | −0.441 | 0.947 | 0.0001 | 0.2675 | |
genicSNPs | −0.148 | −0.139 | −0.158 | −0.147 | 0.776 | 0.736 | 0.6156 | |
indels | 0.016 | 0.017 | 0.014 | 0.018 | 0.031 | 0.029 | 0.014 | |
Japonica854 samples | ||||||||
gaSNPs for heat tolerance | 0.0001 | 0.0001 | 0.0001 | 0.1860 | 0.0584 | 0.0101 | 0.1220 | |
gaSNPs for cold tolerance | 0.992 | 0.0001 | 0.0001 | 0.4732 | 0.1989 | 0.0015 | 0.0898 | |
gaSNPs for fertility | 0.991 | 0.989 | 0.0001 | 0.0781 | 0.0171 | 0.0293 | 0.0722 | |
gaSNPs for seed size | 0.994 | 0.993 | 0.991 | 0.3319 | 0.1247 | 0.0044 | 0.1021 | |
genomeSNPs | −0.045 | −0.025 | −0.060 | −0.033 | 0.0001 | 0.0001 | 0.4486 | |
neutralSNPs | −0.065 | −0.044 | −0.082 | −0.053 | 0.984 | 0.0001 | 0.4246 | |
genicSNPs | 0.088 | 0.108 | 0.075 | 0.097 | 0.921 | 0.905 | 0.4255 | |
indels | −0.053 | −0.058 | −0.062 | −0.056 | −0.026 | −0.027 | −0.027 |
Sample | Group | Origin | APD | SD | Sample | Group | Origin | APD | SD |
---|---|---|---|---|---|---|---|---|---|
Character: Heat tolerance | Character: Cold tolerance | ||||||||
B166 | japonica | North Korea | 0.2689 | 0.0179 | B166 | japonica | North Korea | 0.2598 | 0.0178 |
IRIS_313-9108 | indica | Bangladesh | 0.2648 | 0.0118 | B203 | indica | China | 0.2594 | 0.0107 |
IRIS_313-10375 | indica | Philippines | 0.2645 | 0.0102 | IRIS_313-9108 | indica | Bangladesh | 0.2593 | 0.0105 |
B203 | indica | China | 0.2644 | 0.0125 | IRIS_313-10002 | indica | Sri Lanka | 0.2591 | 0.0123 |
IRIS_313-10002 | indica | Sri Lanka | 0.2635 | 0.0127 | B181 | indica | Australia | 0.2587 | 0.0120 |
IRIS_313-9575 | indica | Thailand | 0.2635 | 0.0131 | IRIS_313-8859 | indica | China | 0.2577 | 0.0120 |
B146 | indica | China | 0.2621 | 0.0138 | IRIS_313-8383 | indica | Philippines | 0.2575 | 0.0124 |
IRIS_313-8859 | indica | China | 0.2619 | 0.0132 | IRIS_313-10057 | japonica | Japan | 0.2559 | 0.0199 |
B202 | indica | China | 0.2607 | 0.0124 | CX51 | indica | China | 0.2553 | 0.0118 |
B185 | indica | Lao | 0.2602 | 0.0131 | CX9 | indica | China | 0.2552 | 0.0118 |
B181 | indica | Australia | 0.2601 | 0.0133 | IRIS_313-10375 | indica | Philippines | 0.2550 | 0.0092 |
B030 | indica | India | 0.2598 | 0.0140 | IRIS_313-9814 | japonica | Hungary | 0.2550 | 0.0190 |
IRIS_313-11733 | indica | China | 0.2594 | 0.0141 | B087 | indica | China | 0.2545 | 0.0120 |
CX50 | indica | China | 0.2593 | 0.0147 | IRIS_313-8401 | indica | India | 0.2545 | 0.0121 |
IRIS_313-8401 | indica | India | 0.2586 | 0.0137 | IRIS_313-9575 | indica | Thailand | 0.2544 | 0.0123 |
CX9 | indica | China | 0.2585 | 0.0133 | B030 | indica | India | 0.2539 | 0.0126 |
B087 | indica | China | 0.2581 | 0.0130 | B146 | indica | China | 0.2533 | 0.0128 |
IRIS_313-10057 | japonica | Japan | 0.2580 | 0.0200 | B202 | indica | China | 0.2533 | 0.0118 |
CX84 | indica | Vietnam | 0.2578 | 0.0121 | IRIS_313-8474 | indica | Thailand | 0.2529 | 0.0127 |
IRIS_313-10341 | indica | Bangladesh | 0.2572 | 0.0139 | CX86 | indica | Vietnam | 0.2528 | 0.0133 |
IRIS_313-11144 | indica | Myanmar | 0.2568 | 0.0151 | CX50 | indica | China | 0.2525 | 0.0132 |
IRIS_313-8383 | indica | Philippines | 0.2566 | 0.0135 | IRIS_313-9346 | japonica | Taiwan | 0.2524 | 0.0196 |
CX548 | indica | China | 0.2565 | 0.0140 | CX548 | indica | China | 0.2523 | 0.0125 |
IRIS_313-8314 | japonica | Indonesia | 0.2563 | 0.0148 | B185 | indica | Lao | 0.2522 | 0.0122 |
CX86 | indica | Vietnam | 0.2560 | 0.0136 | IRIS_313-11733 | indica | China | 0.2519 | 0.0136 |
Character: Fertility | Character: Seed size | ||||||||
IRIS_313-10375 | indica | Philippines | 0.2803 | 0.0111 | B203 | indica | China | 0.2687 | 0.0111 |
B166 | japonica | North Korea | 0.2768 | 0.0207 | B166 | japonica | North Korea | 0.2685 | 0.0205 |
B203 | indica | China | 0.2745 | 0.0134 | IRIS_313-9108 | indica | Bangladesh | 0.2668 | 0.0114 |
CX84 | indica | Vietnam | 0.2718 | 0.0136 | B185 | indica | Lao | 0.2654 | 0.0133 |
IRIS_313-9108 | indica | Bangladesh | 0.2707 | 0.0137 | IRIS_313-10002 | indica | Sri Lanka | 0.2644 | 0.0131 |
B087 | indica | China | 0.2699 | 0.0143 | B181 | indica | Australia | 0.2638 | 0.0130 |
B181 | indica | Australia | 0.2696 | 0.0149 | IRIS_313-8383 | indica | Philippines | 0.2637 | 0.0138 |
IRIS_313-9575 | indica | Thailand | 0.2694 | 0.0149 | IRIS_313-8401 | indica | India | 0.2637 | 0.0137 |
IRIS_313-8383 | indica | Philippines | 0.2686 | 0.0150 | B087 | indica | China | 0.2632 | 0.0127 |
CX9 | indica | China | 0.2683 | 0.0145 | IRIS_313-10057 | japonica | Japan | 0.2630 | 0.0211 |
IRIS_313-8401 | indica | India | 0.2682 | 0.0151 | B030 | indica | India | 0.2625 | 0.0137 |
IRIS_313-10002 | indica | Sri Lanka | 0.2674 | 0.0153 | IRIS_313-10375 | indica | Philippines | 0.2623 | 0.0101 |
B202 | indica | China | 0.2672 | 0.0135 | CX51 | indica | China | 0.2619 | 0.0126 |
B185 | indica | Lao | 0.2671 | 0.0150 | IRIS_313-8859 | indica | China | 0.2616 | 0.0129 |
B146 | indica | China | 0.2668 | 0.0152 | CX9 | indica | China | 0.2611 | 0.0133 |
IRIS_313-8859 | indica | China | 0.2662 | 0.0145 | CX50 | indica | China | 0.2608 | 0.0140 |
B030 | indica | India | 0.2651 | 0.0154 | IRIS_313-9575 | indica | Thailand | 0.2604 | 0.0131 |
IRIS_313-11144 | indica | Myanmar | 0.2641 | 0.0161 | IRIS_313-9814 | japonica | Hungary | 0.2604 | 0.0212 |
IRIS_313-9814 | japonica | Hungary | 0.2635 | 0.0232 | B146 | indica | China | 0.2601 | 0.0144 |
IRIS_313-10341 | indica | Bangladesh | 0.2625 | 0.0157 | IRIS_313-10341 | indica | Bangladesh | 0.2593 | 0.0145 |
IRIS_313-10057 | japonica | Japan | 0.2619 | 0.0234 | B202 | indica | China | 0.2590 | 0.0126 |
IRIS_313-8314 | japonica | Indonesia | 0.2617 | 0.0171 | CX548 | indica | China | 0.2590 | 0.0138 |
CX50 | indica | China | 0.2615 | 0.0160 | IRIS_313-9346 | japonica | Taiwan | 0.2587 | 0.0227 |
IRIS_313-11139 | indica | Myanmar | 0.2610 | 0.0158 | B244 | indica | China | 0.2585 | 0.0136 |
CX51 | indica | China | 0.2609 | 0.0143 | IRIS_313-11144 | indica | Myanmar | 0.2583 | 0.0145 |
Sample | Group | Origin | APD | SD | Sample | Group | Origin | APD | SD |
---|---|---|---|---|---|---|---|---|---|
Character: Heat tolerance | Character: Cold tolerance | ||||||||
IRIS_313-8466 | indica | Thailand | 0.2635 | 0.0107 | IRIS_313-11968 | indica | China | 0.2586 | 0.0099 |
IRIS_313-11968 | indica | China | 0.2632 | 0.0106 | B203 | indica | China | 0.2581 | 0.0098 |
B203 | indica | China | 0.2618 | 0.0106 | IRIS_313-7636 | indica | Mali | 0.2563 | 0.0102 |
IRIS_313-7636 | indica | Mali | 0.2611 | 0.0107 | B181 | indica | Australia | 0.2560 | 0.0100 |
IRIS_313-12190 | indica | Lao | 0.2609 | 0.0111 | IRIS_313-8466 | indica | Thailand | 0.2554 | 0.0096 |
IRIS_313-11894 | indica | Vietnam | 0.2596 | 0.0113 | IRIS_313-11894 | indica | Vietnam | 0.2553 | 0.0102 |
B146 | indica | China | 0.2591 | 0.0111 | IRIS_313-11763 | indica | Cameroon | 0.2549 | 0.0105 |
B202 | indica | China | 0.2590 | 0.0110 | CX561 | indica | China | 0.2532 | 0.0103 |
B185 | indica | Lao | 0.2576 | 0.0111 | CX370 | indica | China | 0.2531 | 0.0105 |
B181 | indica | Australia | 0.2575 | 0.0111 | IRIS_313-11779 | indica | Tanzania | 0.2523 | 0.0107 |
B030 | indica | India | 0.2565 | 0.0113 | IRIS_313-12190 | indica | Lao | 0.2517 | 0.0107 |
IRIS_313-11084 | indica | Cambodia | 0.2564 | 0.0116 | B087 | indica | China | 0.2516 | 0.0105 |
CX413 | indica | Philippines | 0.2563 | 0.0129 | B202 | indica | China | 0.2514 | 0.0106 |
B087 | indica | China | 0.2560 | 0.0114 | B030 | indica | India | 0.2510 | 0.0106 |
CX561 | indica | China | 0.2559 | 0.0115 | B146 | indica | China | 0.2504 | 0.0108 |
IRIS_313-11779 | indica | Tanzania | 0.2559 | 0.0115 | IRIS_313-11799 | indica | China | 0.2499 | 0.0108 |
CX369 | indica | Philippines | 0.2555 | 0.0116 | B185 | indica | Lao | 0.2498 | 0.0106 |
IRIS_313-8405 | indica | China | 0.2545 | 0.0117 | CX378 | indica | China | 0.2498 | 0.0109 |
IRIS_313-11763 | indica | Cameroon | 0.2542 | 0.0115 | CX416 | indica | Philippines | 0.2496 | 0.0110 |
CX378 | indica | China | 0.2535 | 0.0116 | CX369 | indica | Philippines | 0.2493 | 0.0108 |
CX416 | indica | Philippines | 0.2534 | 0.0115 | B244 | indica | China | 0.2485 | 0.0112 |
IRIS_313-8265 | indica | India | 0.2529 | 0.0119 | IRIS_313-11896 | indica | Vietnam | 0.2485 | 0.0113 |
IRIS_313-10054 | indica | Panama | 0.2529 | 0.0120 | IRIS_313-11084 | indica | Cambodia | 0.2483 | 0.0112 |
B207 | indica | China | 0.2522 | 0.0118 | IRIS_313-8265 | indica | India | 0.2483 | 0.0110 |
CX370 | indica | China | 0.2522 | 0.0118 | IRIS_313-10045 | indica | Gambia | 0.2483 | 0.0112 |
Character: Fertility | Character: Seed size | ||||||||
IRIS_313-8466 | indica | Thailand | 0.2788 | 0.0113 | B203 | indica | China | 0.2675 | 0.0097 |
B203 | indica | China | 0.2716 | 0.0110 | IRIS_313-11968 | indica | China | 0.2656 | 0.0101 |
CX413 | indica | Philippines | 0.2691 | 0.0145 | IRIS_313-8466 | indica | Thailand | 0.2626 | 0.0106 |
IRIS_313-11968 | indica | China | 0.2684 | 0.0115 | B185 | indica | Lao | 0.2626 | 0.0106 |
B087 | indica | China | 0.2667 | 0.0116 | IRIS_313-7636 | indica | Mali | 0.2618 | 0.0108 |
B181 | indica | Australia | 0.2660 | 0.0113 | B087 | indica | China | 0.2607 | 0.0103 |
IRIS_313-12190 | indica | Lao | 0.2659 | 0.0118 | B181 | indica | Australia | 0.2607 | 0.0103 |
CX561 | indica | China | 0.2652 | 0.0118 | IRIS_313-11763 | indica | Cameroon | 0.2607 | 0.0110 |
IRIS_313-11763 | indica | Cameroon | 0.2650 | 0.0116 | IRIS_313-11779 | indica | Tanzania | 0.2606 | 0.0110 |
B202 | indica | China | 0.2648 | 0.0115 | CX370 | indica | China | 0.2602 | 0.0108 |
IRIS_313-11779 | indica | Tanzania | 0.2646 | 0.0115 | B030 | indica | India | 0.2596 | 0.0109 |
IRIS_313-7636 | indica | Mali | 0.2632 | 0.0118 | IRIS_313-11894 | indica | Vietnam | 0.2588 | 0.0106 |
B185 | indica | Lao | 0.2632 | 0.0117 | CX561 | indica | China | 0.2583 | 0.0108 |
IRIS_313-11894 | indica | Vietnam | 0.2629 | 0.0117 | IRIS_313-12190 | indica | Lao | 0.2582 | 0.0112 |
B146 | indica | China | 0.2628 | 0.0116 | CX369 | indica | Philippines | 0.2576 | 0.0108 |
B030 | indica | India | 0.2615 | 0.0120 | B202 | indica | China | 0.2573 | 0.0109 |
IRIS_313-10054 | indica | Panama | 0.2595 | 0.0119 | IRIS_313-11896 | indica | Vietnam | 0.2565 | 0.0114 |
IRIS_313-11896 | indica | Vietnam | 0.2593 | 0.0126 | B146 | indica | China | 0.2563 | 0.0112 |
IRIS_313-8405 | indica | China | 0.2587 | 0.0125 | CX413 | indica | Philippines | 0.2562 | 0.0121 |
CX370 | indica | China | 0.2580 | 0.0119 | CX378 | indica | China | 0.2558 | 0.0110 |
CX369 | indica | Philippines | 0.2573 | 0.0123 | IRIS_313-8405 | indica | China | 0.2557 | 0.0111 |
B244 | indica | China | 0.2572 | 0.0124 | B244 | indica | China | 0.2557 | 0.0112 |
IRIS_313-10045 | indica | Gambia | 0.2570 | 0.0123 | CX416 | indica | Philippines | 0.2551 | 0.0112 |
IRIS_313-8265 | indica | India | 0.2568 | 0.0121 | IRIS_313-8265 | indica | India | 0.2550 | 0.0113 |
B207 | indica | China | 0.2568 | 0.0124 | IRIS_313-11084 | indica | Cambodia | 0.2550 | 0.0113 |
Sample | Group | Origin | APD | SD | Sample | Group | Origin | APD | SD |
---|---|---|---|---|---|---|---|---|---|
Character: Heat tolerance | Character: Cold tolerance | ||||||||
B166 | japonica | North Korea | 0.2503 | 0.0099 | B166 | japonica | North Korea | 0.2404 | 0.0098 |
IRIS_313-11582 | japonica | China | 0.2452 | 0.0105 | IRIS_313-11582 | japonica | China | 0.2377 | 0.0103 |
CX389 | japonica | China | 0.2425 | 0.0103 | CX389 | japonica | China | 0.2367 | 0.0101 |
B144 | japonica | China | 0.2398 | 0.0107 | IRIS_313-12330 | japonica | Lao | 0.2350 | 0.0106 |
IRIS_313-12226 | japonica | Lao | 0.2395 | 0.0112 | IRIS_313-7863 | japonica | Brazil | 0.2346 | 0.0112 |
IRIS_313-7863 | japonica | Brazil | 0.2380 | 0.0115 | IRIS_313-11540 | japonica | Guinea | 0.2343 | 0.0113 |
IRIS_313-7856 | japonica | Thailand | 0.2376 | 0.0112 | IRIS_313-8046 | japonica | Italy | 0.2327 | 0.0113 |
IRIS_313-12006 | japonica | Malaysia | 0.2360 | 0.0110 | IRIS_313-12063 | japonica | Lao | 0.2320 | 0.0109 |
IRIS_313-8046 | japonica | Italy | 0.2357 | 0.0122 | IRIS_313-12226 | japonica | Lao | 0.2310 | 0.0109 |
IRIS_313-11540 | japonica | Guinea | 0.2356 | 0.0117 | B199 | japonica | China | 0.2310 | 0.0109 |
IRIS_313-12330 | japonica | Lao | 0.2348 | 0.0113 | B144 | japonica | China | 0.2305 | 0.0107 |
IRIS_313-11923 | japonica | Thailand | 0.2342 | 0.0119 | IRIS_313-7856 | japonica | Thailand | 0.2293 | 0.0109 |
IRIS_313-9366 | japonica | United States of America | 0.2339 | 0.0116 | CX352 | japonica | China | 0.2290 | 0.0109 |
IRIS_313-12063 | japonica | Lao | 0.2336 | 0.0119 | IRIS_313-12006 | japonica | Malaysia | 0.2282 | 0.0108 |
B025 | japonica | Indonesia | 0.2334 | 0.0112 | IRIS_313-9366 | japonica | United States of America | 0.2282 | 0.0112 |
B169 | japonica | Japan | 0.2331 | 0.0117 | IRIS_313-11652 | japonica | China | 0.2281 | 0.0115 |
CX353 | japonica | Vietnam | 0.2331 | 0.0116 | IRIS_313-11923 | japonica | Thailand | 0.2280 | 0.0113 |
IRIS_313-7850 | japonica | Madagascar | 0.2331 | 0.0118 | IRIS_313-11890 | japonica | Taiwan | 0.2278 | 0.0113 |
B117 | japonica | China | 0.2330 | 0.0118 | B037 | japonica | Argentina | 0.2273 | 0.0110 |
B199 | japonica | China | 0.2329 | 0.0116 | IRIS_313-7850 | japonica | Madagascar | 0.2272 | 0.0117 |
IRIS_313-12266 | japonica | Myanmar | 0.2327 | 0.0120 | B025 | japonica | Indonesia | 0.2268 | 0.0109 |
IRIS_313-11755 | japonica | Liberia | 0.2326 | 0.0116 | IRIS_313-11755 | japonica | Liberia | 0.2268 | 0.0115 |
IRIS_313-11890 | japonica | Taiwan | 0.2323 | 0.0119 | IRIS_313-11928 | japonica | Philippines | 0.2268 | 0.0113 |
IRIS_313-11652 | japonica | China | 0.2318 | 0.0118 | IRIS_313-12348 | japonica | Lao | 0.2266 | 0.0115 |
CX352 | japonica | China | 0.2310 | 0.0113 | CX307 | japonica | China | 0.2260 | 0.0112 |
Character: Fertility | Character: Seed size | ||||||||
B166 | japonica | North Korea | 0.2558 | 0.0102 | B166 | japonica | North Korea | 0.2461 | 0.0104 |
IRIS_313-11582 | japonica | China | 0.2482 | 0.0108 | IRIS_313-11582 | japonica | China | 0.2434 | 0.0101 |
CX389 | japonica | China | 0.2432 | 0.0103 | IRIS_313-7863 | japonica | Brazil | 0.2407 | 0.0109 |
IRIS_313-7856 | japonica | Thailand | 0.2417 | 0.0114 | CX389 | japonica | China | 0.2406 | 0.0099 |
IRIS_313-12006 | japonica | Malaysia | 0.2393 | 0.0110 | IRIS_313-12330 | japonica | Lao | 0.2382 | 0.0108 |
IRIS_313-12330 | japonica | Lao | 0.2392 | 0.0112 | IRIS_313-11540 | japonica | Guinea | 0.2368 | 0.0116 |
IRIS_313-7863 | japonica | Brazil | 0.2381 | 0.0116 | B144 | japonica | China | 0.2353 | 0.0104 |
IRIS_313-12226 | japonica | Lao | 0.2375 | 0.0115 | IRIS_313-12063 | japonica | Lao | 0.2347 | 0.0117 |
IRIS_313-11540 | japonica | Guinea | 0.2374 | 0.0121 | IRIS_313-12006 | japonica | Malaysia | 0.2344 | 0.0105 |
IRIS_313-12266 | japonica | Myanmar | 0.2366 | 0.0120 | IRIS_313-7856 | japonica | Thailand | 0.2344 | 0.0110 |
B101 | japonica | China | 0.2359 | 0.0113 | IRIS_313-12266 | japonica | Myanmar | 0.2332 | 0.0121 |
B144 | japonica | China | 0.2342 | 0.0107 | IRIS_313-12226 | japonica | Lao | 0.2326 | 0.0111 |
IRIS_313-11652 | japonica | China | 0.2338 | 0.0122 | IRIS_313-9366 | japonica | United States of America | 0.2326 | 0.0113 |
CX307 | japonica | China | 0.2338 | 0.0115 | IRIS_313-8046 | japonica | Italy | 0.2324 | 0.0118 |
IRIS_313-9366 | japonica | United States of America | 0.2336 | 0.0117 | IRIS_313-11652 | japonica | China | 0.2324 | 0.0117 |
IRIS_313-8046 | japonica | Italy | 0.2335 | 0.0127 | IRIS_313-7850 | japonica | Madagascar | 0.2322 | 0.0117 |
IRIS_313-12063 | japonica | Lao | 0.2335 | 0.0120 | B199 | japonica | China | 0.2322 | 0.0111 |
B199 | japonica | China | 0.2331 | 0.0119 | IRIS_313-11923 | japonica | Thailand | 0.2320 | 0.0121 |
B117 | japonica | China | 0.2328 | 0.0121 | CX353 | japonica | Vietnam | 0.2314 | 0.0110 |
IRIS_313-11923 | japonica | Thailand | 0.2324 | 0.0121 | B025 | japonica | Indonesia | 0.2312 | 0.0108 |
B025 | japonica | Indonesia | 0.2317 | 0.0115 | CX352 | japonica | China | 0.2310 | 0.0111 |
IRIS_313-11571 | japonica | China | 0.2312 | 0.0119 | B117 | japonica | China | 0.2302 | 0.0117 |
CX352 | japonica | China | 0.2311 | 0.0120 | IRIS_313-11755 | japonica | Liberia | 0.2300 | 0.0117 |
IRIS_313-7850 | japonica | Madagascar | 0.2310 | 0.0123 | B101 | japonica | China | 0.2298 | 0.0110 |
IRIS_313-11908 | japonica | China | 0.2310 | 0.0129 | IRIS_313-12348 | japonica | Lao | 0.2295 | 0.0117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Crown Copyright: @ His Majesty the King in Right of Canada, 2024. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.-B. Genetically Distinct Rice Lines for Specific Characters as Revealed by Gene-Associated Average Pairwise Dissimilarity. Crops 2024, 4, 636-650. https://doi.org/10.3390/crops4040044
Fu Y-B. Genetically Distinct Rice Lines for Specific Characters as Revealed by Gene-Associated Average Pairwise Dissimilarity. Crops. 2024; 4(4):636-650. https://doi.org/10.3390/crops4040044
Chicago/Turabian StyleFu, Yong-Bi. 2024. "Genetically Distinct Rice Lines for Specific Characters as Revealed by Gene-Associated Average Pairwise Dissimilarity" Crops 4, no. 4: 636-650. https://doi.org/10.3390/crops4040044
APA StyleFu, Y.-B. (2024). Genetically Distinct Rice Lines for Specific Characters as Revealed by Gene-Associated Average Pairwise Dissimilarity. Crops, 4(4), 636-650. https://doi.org/10.3390/crops4040044