Effects of Tillage Intensity, Cover Crop Species and Cover Crop Biomass on N-Fluxes, Weeds and Oat Yields in an Organic Field Experiment in Germany
Abstract
:1. Introduction
- Which of the tested cover crop species leads to the highest mineralized N (Nmin) content in spring before tillage?
- How does Nmin develop after the cover crops under the main crop, oats, in the different tillage treatments?
- Which of the tested cover crop species have the best weed-suppressing effect in spring before tillage? How do weed density, cover and biomass develop during oat growth after tillage?
- How do the different cover crop–tillage combinations affect the yield of the main crop (oats)?
2. Material and Methods
2.1. Site Description
2.2. Experimental Design
- Sinapis alba (cv. Asta; seed rate 20 kg ha−1),
- Trifolium resupinatum (cv. Marco Polo; 20 kg ha−1),
- Vicia sativa (cv. Ereica; 105 kg ha−1).
- A bare fallow served as a control.
- Oat (Avena sativa, cv. Scorpion) was sown at the following seed rates:
- Trial 1: 400 germinable grains m−2.
- Trial 2: due to late sowing, 450 germinable grains m−2.
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Weather
3.2. Yield, N-Uptake and C/N Ratio of the Cover Crops
3.3. N-Dynamic
3.4. Weed Cover, Density and Biomass
3.5. Yield of the Main Crop, Oats
4. Discussion
5. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; Melgares de Aguilar, J.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to RT under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Cavigelli, M.A.; Mirsky, S.B.; Teasdale, J.R.; Spargo, J.T.; Doran, J. Organic grain cropping systems to enhance ecosystem services. Renew. Agric. Food Syst. 2013, 28, 145–159. [Google Scholar] [CrossRef]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef] [Green Version]
- Kainz, M.; Gerl, G.; Lemnitzer, B.; Bauchenß, J.; Hülsbergen, K.-J. Wirkungen Differenzierter Bodenbearbeitungssysteme im Dauerversuch Scheyern. In Ende der Nische. 8. Wissenschaftstagung Ökologischer Landbau; Heß, J., Rahmann, G., Eds.; Kassel University Press: Kassel, Germany, 2015; pp. 1–4. [Google Scholar]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with RT and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [Green Version]
- Mäder, P.; Berner, A. Development of RT systems in organic farming in Europe. Renew. Agric. Food Syst. 2012, 27, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Tebrügge, F.; Düring, R.-A. Reducing tillage intensity—A review of results from a long-term study in Germany. Soil Tillage Res. 1999, 53, 15–28. [Google Scholar] [CrossRef]
- Zikeli, S.; Gruber, S.; Teufel, C.-F.; Hartung, K.; Claupein, W. Effects of RT on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management. Sustainability 2013, 5, 3876–3894. [Google Scholar] [CrossRef] [Green Version]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.K.; Peigné, J.; Chiodelli Palazzoli, M.; Schulz, F.; et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res. 2022, 216, 105262, ISSN 0167-1987. [Google Scholar] [CrossRef]
- Schwarz, J. Einfluss der Bodenbearbeitung auf die Verunkrautung. Getreidemagazin 2014, 19, 31–33. [Google Scholar]
- Triplett, G.B.; Dick, W.A. No-Tillage Crop Production: A Revolution in Agriculture! Agron. J. 2008, 100, 153–165. [Google Scholar] [CrossRef]
- Gronle, A.; Heß, J.; Böhm, H. Weed suppressive ability in sole and intercrops of pea and oat and its interaction with ploughing depth and crop interference in organic farming. Org. Agric. 2015, 5, 39–51. [Google Scholar] [CrossRef]
- Paffrath, A.; Stumm, C. Systemvergleich Wendende und Nicht Wendende Bodenbearbeitung im Ökologischen Landbau. In Öko-Ackerbau Ohne Tiefes Pflügen. Praxisbeispiele und Forschungsergebnisse, Gefördert Durch das Bundesprogramm Ökologischer Landbau; Schmidt, H., Ed.; Wissenschaftliche Schriftenreihe Ökologischer Landbau: Berlin, Germany, 2010; pp. 252–256. [Google Scholar]
- Brandsæter, L.O.; Bakken, A.K.; Mangerud, K.; Riley, H.; Eltun, R.; Fykse, H. Effects of tractor weight, wheel placement and depth of ploughing on the infestation of perennial weeds in organically farmed cereals. Eur. J. Agron. 2011, 34, 239–246. [Google Scholar] [CrossRef]
- Niggli, U.; Dierauer, H. Unkrautbekämpfung im ökologischen Landbau in der Schweiz. In Unkrautregulierung im Ökologischen Landbau, Bd. 72. Pflanzenschutz im ökologischen Landbau—Probleme und Lösungsansätze—Drittes Fachgespräch; Pallutt, B., Ed.; Saphir Verlag: Ribbesbüttel, Germany, 2000; pp. 17–26. [Google Scholar]
- Schmidt, H.; Leithold, G. Einfluss unterschiedlicher Grundbodenbearbeitungssysteme auf den Unkrautdruck in ökologischen Fruchtfolgen. In Bodenbearbeitung und Unkrautregulierung im Ökologischen Landbau. KTBL-Tagung und Workshop vom 13–14. November 2002 in Kassel; Harder, H., Kloepfer, F., Eds.; Landwirtschaftsverl: Münster, Germany, 2003; pp. 76–79. [Google Scholar]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Carr, P.M. Guest Editorial: Conservation Tillage for Organic Farming. Agriculture 2017, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Zikeli, S.; Gruber, S. Reduced Tillage and No-Till in Organic Farming Systems, Germany—Status Quo, Potentials and Challenges. Agriculture 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Beach, H.M.; Laing, K.W.; Walle, M.V.D.; Martin, R.C. The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support. Sustainability 2018, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Halde, C.; Gagné, S.; Charles, A.; Lawley, Y. Organic No-Till Systems in Eastern Canada: A Review. Agriculture 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Moyer, J. Organic No-Till Farming; Acres U.S.A.: Austin, TX, USA, 2011; ISBN 9781601730176. [Google Scholar]
- Drinkwater, L.E.; Janke, R.R.; Rossoni-Longnecker, L. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil 2000, 227, 99–113. [Google Scholar] [CrossRef]
- Bàrberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Price, A.J.; Norsworthy, J.K. Cover Crops for Weed Management in Southern Reduced-Tillage Vegetable Cropping Systems. Weed Technol. 2013, 27, 212–217. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Leteo, F.; Testani, E.; Montemurro, F. Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. Eur. J. Agron. 2013, 50, 11–18. [Google Scholar] [CrossRef]
- Grosse, M.; Heß, J. Sommerzwischenfrüchte für verbessertes Stickstoff- und Beikrautmanagement in ökologischen Anbausystemen mit reduzierter Bodenbearbeitung in den gemäßigten Breiten. J. Für Kult. 2018, 70, 173–183. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fertil. Res. 1994, 37, 227–234. [Google Scholar] [CrossRef]
- Brust, J.; Claupein, W.; Gerhards, R. Growth and weed suppression ability of common and new cover crops in Germany. Crop Prot. 2014, 63, 1–8. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Gallandt, E.R. Brassica cover cropping for weed management: A review. Renew. Agric. Food Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Piepho, H.-P. (2012): Vorlage für Zwischenfrucht-Bodenbearbeitungs-Versuch. Stuttgart-Hohenheim, 01.05.2012. E-Mail to Hannes Schulz.
- Gruber, H.; Thamm, U. Eignung von ausgewählten Zwischenfruchtgemengen für Anbau und Verfütterung im ökologischen Landbau, Nr. 4/04. Forschungsberichte der Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern; Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Koordinierungsstelle Ökologischer Landbau: Gülzow, Germany, 2005. [Google Scholar]
- König, U.J.; von Leguminosen, Z. Abschlußbericht des Forschungsprojektes: Verfahren zur Minimierung der Nitratausträge und Optimierung des N-Transfers in die Folgefrüchte beim Zwischenfruchtanbau von Leguminosen; Inst. für Biologisch-Dynamische Forschung: Darmstadt, Germany, 1996. [Google Scholar]
- Kolbe, H.; Schuster, M.; Hänsel, M.; Grünbeck, A.; Schließer, I.; Köhler, A.; Karalus, W.; Krellig, B.; Erzeugung, F.P.; Pommer, R.; et al. Zwischenfrüchte im Ökologischen Landbau; Sächsische Landesanstalt für Landwirtschaft: Leipzig, Germany, 2004. [Google Scholar]
- Toom, M.; Talgre, L.; Pechter, P.; Narits, L.; Tamm, S.; Lauringson, E. The effect of sowing date on cover crop biomass and nitrogen accumulation. Agron. Res. 2019, 17, 1779–1787. [Google Scholar] [CrossRef]
- Baggs, E.M.; Watson, C.A.; Rees, R.M. The fate of nitrogen from incorporated cover crop and green manure residues. Nutr. Cycl. Agroecosystems 2000, 56, 153–163. [Google Scholar] [CrossRef]
- Schmidt, A.; Gläser, H. Anbau von Zwischenfrüchten. Auswertung der Versuchsanlagen 2012/13 in Sachsen. Entwicklungsprogramm für den ländlichen Raum im Freistaat Sachsen 2007–2013; Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG): Dresden, Germany, 2013. [Google Scholar]
- Beckmann, E. Zum Wert von Vicia sativa L. und Trifolium resupinatum L. unter Variierenden Bedingungen im Zwischenfruchtanbau. PhD’s thesis, Justus-Liebig-Universität, Giessen, Germany, 1998. [Google Scholar]
- Wittwer, R.; Dorn, B.; Jossi, W.; Zihlmann, U.; van der Heijden, M. Zwischenfrüchte als wichtiges Puzzleteil für den pfluglosen ökologischen Landbau. In Ideal und Wirklichkeit—Perspektiven Ökologischer Landbewirtschaftung. 12. Wissenschaftstagung Ökologischer Landbau. Bonn, 05.-08.03.2013; Neuhoff, D., Stumm, C., Ziegler, S., Rahmann, G., Hamm, U., Köpke, U., Eds.; Verlag Dr. Köster: Berlin, Germany, 2013; pp. 46–49. [Google Scholar]
- Gieske, M.F.; Ackroyd, V.J.; Baas, D.G.; Mutch, D.R.; Wyse, D.L.; Durgan, B.R. Brassica Cover Crop Effects on Nitrogen Availability and Oat and Corn Yield. Agron. J. 2016, 108, 151–161. [Google Scholar] [CrossRef]
- Wittwer, R.; Dorn, B.; Jossi, W.; van der Heijden, M.G. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef] [PubMed]
Date | Measure | Depth/Row Distance | |
---|---|---|---|
Trial 1 | Trial 2 | ||
22 August 2011 | 20 and 21 August 2012 | Stubble tillage:Chisel | Depth 10 cm |
23 August 2011 | 22 August 2012 | Rotary harrow | |
26 August 2011 | 22 August 2012 | Sowing cover crops and rolling | Row distance 12 cm |
17 October 2011 | --- | Flaming of bare fallow (=control) plots | |
5 April 2012 | 18 April 2013 | Plough Chisel (Trial 1)/disc harrow (Trial 2) | Depth 22–24 cm Depth 10–12 cm/7 cm |
10 April 2012 | 18 April 2013 | Rotary harrow in PL and RT Nothing in the NT plots | |
10 April 2012 | 22 April 2013 | Sowing oats | Row distance 12 cm in PL and RT/15 cm in NT |
Temperature | 30-year average | 9.1 °C |
Trial 1 (September 2011 to August 2012) | 9.4 °C | |
Trial 2 (September 2012 to August 2013) | 8.2 °C | |
Precipitation | 30-year average | 725 mm |
Trial 1 (September 2011 to August 2012) | 557 mm | |
Trial 2 (September 2012 to August 2013) | 482 mm |
Species | Trial 1 | Trial 2 |
---|---|---|
S. alba | 25.9 ± 0.72 | 16.7 ± 0.47 c |
T. resupinatum * | n.a. | 10.9 ± 0.10 b |
V. sativa | 10.0 ± 0.19 | 9.9 ± 0.12 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosse, M.; Haase, T.; Heß, J. Effects of Tillage Intensity, Cover Crop Species and Cover Crop Biomass on N-Fluxes, Weeds and Oat Yields in an Organic Field Experiment in Germany. Crops 2022, 2, 461-475. https://doi.org/10.3390/crops2040033
Grosse M, Haase T, Heß J. Effects of Tillage Intensity, Cover Crop Species and Cover Crop Biomass on N-Fluxes, Weeds and Oat Yields in an Organic Field Experiment in Germany. Crops. 2022; 2(4):461-475. https://doi.org/10.3390/crops2040033
Chicago/Turabian StyleGrosse, Meike, Thorsten Haase, and Jürgen Heß. 2022. "Effects of Tillage Intensity, Cover Crop Species and Cover Crop Biomass on N-Fluxes, Weeds and Oat Yields in an Organic Field Experiment in Germany" Crops 2, no. 4: 461-475. https://doi.org/10.3390/crops2040033
APA StyleGrosse, M., Haase, T., & Heß, J. (2022). Effects of Tillage Intensity, Cover Crop Species and Cover Crop Biomass on N-Fluxes, Weeds and Oat Yields in an Organic Field Experiment in Germany. Crops, 2(4), 461-475. https://doi.org/10.3390/crops2040033