Cancer Characteristics and Immunotherapy in Older Adults: Treatment Approaches, Immune-Related Adverse Events, and Management Considerations
Simple Summary
Abstract
1. Introduction
2. Differences in Carcinogenesis in Older vs. Younger Hosts
3. Differences in Treatments in Older vs. Younger Patients
4. IrAEs Are More Common in Older Patients Undergoing CBI
5. IrAEs in Older Patients Impact Therapeutic Efficacy
6. Managing Treatment Complications in Older vs. Younger Hosts
7. Obesity Impacts Cancer Incidence and Immunotherapy Efficacy
8. Hormonal Changes in Older Women May Impact Immunotherapy Efficacy
9. Implications for Older Cancer Patients from the Geriatrician’s Perspective
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, S.; Miao, M.; Wang, Q.; Zhao, H.; Yang, H.; Wang, X. The current status of clinical trials on cancer and age disparities among the most common cancer trial participants. BMC Cancer 2024, 24, 30. [Google Scholar] [CrossRef]
- Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental land-scapes. Br. J. Cancer 2020, 122, 943–952. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Pietrocola, F.; Roiz-Valle, D.; Galluzzi, L.; Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 2023, 35, 12–35. [Google Scholar] [CrossRef]
- Montegut, L.; Lopez-Otin, C.; Kroemer, G. Aging and cancer. Mol. Cancer 2024, 23, 106. [Google Scholar] [CrossRef]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef]
- Shi, S.; Klotz, U. Age-related changes in pharmacokinetics. Curr. Drug Metab. 2011, 12, 601–610. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Witkowski, J.M.; Kotb, R.; Hirokawa, K.; Pawelec, G. Immunosenescence and cancer. Crit. Rev. Oncog. 2013, 18, 489–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nguyen, T.N.M.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H.; Schöttker, B. Incorporation of functional status, frailty, comorbidities and comedication in prediction models for colorectal cancer survival. Int. J. Cancer 2022, 151, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Dos-Santos-Silva, I.; Gupta, S.; Orem, J.; Shulman, L.N. Global disparities in access to cancer care. Commun. Med. 2022, 2, 31. [Google Scholar] [CrossRef]
- Martens, A.; Wistuba-Hamprecht, K.; Yuan, J.; Postow, M.A.; Wong, P.; Capone, M.; Madonna, G.; Khammari, A.; Schilling, B.; Sucker, A.; et al. Increases in Absolute Lymphocytes and Circulating CD4+ and CD8+ T Cells Are Associated with Positive Clinical Outcome of Melanoma Patients Treated with Ipilimumab. Clin. Cancer Res. 2016, 22, 4848–4858. [Google Scholar] [CrossRef] [PubMed]
- Herin, H.; Aspeslagh, S.; Castanon, E.; Dyevre, V.; Marabelle, A.; Varga, A.; Vinay, S.P.; Michot, J.; Ribrag, V.; Gazzah, A.; et al. Immunotherapy phase I trials in patients Older than 70 years with advanced solid tumours. Eur. J. Cancer 2018, 95, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Glimelius, B.; Osterman, E. Adjuvant Chemotherapy in Elderly Colorectal Cancer Patients. Cancers 2020, 12, 2289. [Google Scholar] [CrossRef]
- DeGregori, J.; Seidl, K.J.; Montano, M. Aging and Cancer-Inextricably Linked Across the Lifespan. Aging Cell 2025, 24, e14483. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hannun, Y. The importance of extrinsic factors in the development of cancers. Mol. Cell. Oncol. 2016, 3, e1143079. [Google Scholar] [CrossRef]
- Beerenwinkel, N.; Antal, T.; Dingli, D.; Traulsen, A.; Kinzler, K.W.; E Velculescu, V.; Vogelstein, B.; A Nowak, M. Genetic progres-sion and the waiting time to cancer. PLoS Comput. Biol. 2007, 3, e225. [Google Scholar] [CrossRef]
- Li, C.H.; Haider, S.; Boutros, P.C. Age influences on the molecular presentation of tumours. Nat. Commun. 2022, 13, 208. [Google Scholar] [CrossRef]
- Ismail, S.I.; Naffa, R.G.; Yousef, A.-M.F.; Ghanim, M.T. Incidence of bcr-abl fusion transcripts in healthy individuals. Mol. Med. Rep. 2014, 9, 1271–1276. [Google Scholar] [CrossRef]
- Ostroverkhova, D.; Przytycka, T.M.; Panchenko, A.R. Cancer driver mutations: Predictions and reality. Trends Mol. Med. 2023, 29, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Kakiuchi, N. Clonal expansion in normal tissues. Cancer Sci. 2024, 115, 2117–2124. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, Q.; Joost, S.; Ferrena, A.; Humphreys, D.T.; Li, Z.; Blum, M.; Krause, K.; Ding, S.; Landais, Y.; et al. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 2025, 637, 184–194. [Google Scholar] [CrossRef]
- Colom, B.; Herms, A.; Hall, M.W.J.; Dentro, S.C.; King, C.; Sood, R.K.; Alcolea, M.P.; Piedrafita, G.; Fernandez-Antoran, D.; Ong, S.H.; et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 2021, 598, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Sharma, A.; Stolzing, A.; Desprez, P.-Y.; Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 2020, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. Senescent cell clearance by the immune system: Emerging thera-peutic opportunities. Semin. Immunol. 2018, 40, 101275. [Google Scholar] [CrossRef]
- Wang, T.-W.; Nakanishi, M. Immune surveillance of senescence: Potential application to age-related diseases. Trends Cell Biol. 2025, 35, 248–257. [Google Scholar] [CrossRef]
- Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 2018, 9, 5435. [Google Scholar] [CrossRef]
- Cheong, A.; Nagel, Z.D. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front. Immunol. 2022, 13, 899574. [Google Scholar] [CrossRef]
- Joshi, D.; Patel, J.; Munshi, M.; Mistry, Z.; Prajapati, A.; Mukherjee, A.; Ramachandran, A.V.; Parashar, N.C.; Parashar, G.; Haque, S.; et al. Hormones as a double-edged sword: The role of hormones in cancer progression and the potential of targeted hormone therapies. Med. Oncol. 2024, 41, 283. [Google Scholar] [CrossRef]
- Lee, J.Y.; Peng, T. Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging. Semin. Cancer Biol. 2024, 106-107, 192–200. [Google Scholar] [CrossRef]
- Sadrekarimi, H.; Gardanova, Z.R.; Bakhshesh, M.; Ebrahimzadeh, F.; Yaseri, A.F.; Thangavelu, L.; Hasanpoor, Z.; Zadeh, F.A.; Kahrizi, M.S. Emerging role of human microbiome in cancer development and response to therapy: Special focus on intestinal microflora. J. Transl. Med. 2022, 20, 301. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Sikora, E.; Pawelec, G. Relationships between cancer and aging: A multilevel approach. Biogerontology 2009, 10, 323–338. [Google Scholar] [CrossRef]
- Sena, G.R.; Lima, T.P.F.; Mello, M.J.G.; Thuler, L.C.S.; Lima, J.T.O. Developing Machine Learning Algorithms for the Prediction of Early Death in Elderly Cancer Patients: Usability Study. JMIR Cancer 2019, 5, e12163. [Google Scholar] [CrossRef]
- Reis-Filho, J.S.; Kather, J.N. Overcoming the challenges to implementation of artificial intelligence in pathology. J. Natl. Cancer Inst. 2023, 115, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Obimba, D.C.; Esteva, C.; Tsicheu, E.N.N.; Wong, R. Effectiveness of Artificial Intelligence Technologies in Cancer Treatment for Older Adults: A Systematic Review. J. Clin. Med. 2024, 13, 4979. [Google Scholar] [CrossRef]
- Audureau, E.; Soubeyran, P.; Martinez-Tapia, C.; Bellera, C.; Bastuji-Garin, S.; Boudou-Rouquette, P.; Chahwakilian, A.; Grellety, T.; Hanon, O.; Mathoulin-Pélissier, S.; et al. Machine Learning to Predict Mortality in Older Patients With Cancer: Development and External Validation of the Geriatric Cancer Scoring System Using Two Large French Cohorts. J. Clin. Oncol. 2025, 43, 1429–1440. [Google Scholar] [CrossRef]
- Heudel, P.; Ahmed, M.; Renard, F.; Attye, A. Leveraging Digital Twins for Stratification of Patients with Breast Cancer and Treatment Optimization in Geriatric Oncology: Multivariate Clustering Analysis. JMIR Cancer 2025, 11, e64000. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xu, X.; Zhang, J.; Du, Y.; Yang, X.; He, Z.; Zhao, L.; Liang, T.; Guo, L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals 2024, 17, 1048. [Google Scholar] [CrossRef]
- Sun, J.; Zamyatnin, A.A.; Yuan, X.; Xiao, Y.; Li, H. Editorial: Cancer cell-intrinsic and -extrinsic factors affecting tumor im-mune evasion. Front. Immunol. 2023, 14, 1261820. [Google Scholar] [CrossRef] [PubMed]
- Park, M.D.; Le Berichel, J.; Hamon, P.; Wilk, M.; Belabed, M.; Yatim, N.; Saffon, A.; Boumelha, J.; Falcomata, C.; Tepper, A.; et al. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 2024, 386, eadn0327. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S.; Lamb, T.J.; Pawelec, G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immu-nology. J. Immunol. 2023, 210, 1183–1197. [Google Scholar] [CrossRef]
- Keltsch, E.; Greiner, J.; Wahl, L.; Knape, I.; Tews, D.; Denkinger, M.; Debatin, K.-M.; Strauss, G. Aging modulates the immunosup-pressive, polarizing and metabolic functions of blood-derived myeloid-derived suppressor cells (MDSCs). Immun. Ageing 2025, 22, 29. [Google Scholar] [CrossRef]
- He, S.; Zheng, L.; Qi, C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol. Cancer 2025, 24, 5. [Google Scholar] [CrossRef]
- Gaißler, A.; Bochem, J.; Spreuer, J.; Ottmann, S.; Martens, A.; Amaral, T.; Wagner, N.B.; Claassen, M.; Meier, F.; Terheyden, P.; et al. Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J. Immunother. Cancer 2023, 11, e006802. [Google Scholar] [CrossRef] [PubMed]
- Superfin, D.; Iannucci, A.A.; Davies, A.M. Commentary: Oncologic drugs in patients with organ dysfunction: A summary. Oncology 2007, 12, 1070–1083. [Google Scholar] [CrossRef]
- He, X.; Clarke, S.J.; McLachlan, A.J. Clinical pharmacology of chemotherapy agents in older people with cancer. Curr. Gerontol. Geriatr. Res. 2011, 2011, 628670. [Google Scholar] [CrossRef] [PubMed]
- Aleixo, G.; Patel, T.; Ani, J.; Ferrell, W.J.; Dotan, E.; Takvorian, S.U.; Williams, G.R.; Parikh, R.B.; Sedhom, R. Start low, go slow, a strategy to tailor treatment dosing in older or vulnerable adults with advanced solid cancer: A systematic review and me-ta-analysis. J. Geriatr. Oncol. 2024, 16, 102153. [Google Scholar] [CrossRef]
- Mohile, S.G.; Dale, W.; Somerfield, M.R.; Schonberg, M.A.; Boyd, C.M.; Burhenn, P.S.; Canin, B.; Cohen, H.J.; Holmes, H.M.; Hopkins, J.O.; et al. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Chemotherapy: ASCO Guideline for Geriatric Oncology. J. Clin. Oncol. 2018, 36, 2326–2347. [Google Scholar] [CrossRef]
- Xu, H.; Mohamed, M.; Flannery, M.; Peppone, L.; Ramsdale, E.; Loh, K.P.; Wells, M.; Jamieson, L.; Vogel, V.G.; Hall, B.A.; et al. An Unsupervised Machine Learning Approach to Evaluating the Association of Symptom Clusters with Adverse Outcomes Among Older Adults With Advanced Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e234198. [Google Scholar] [CrossRef]
- Pallis, A.G.; Hatse, S.; Brouwers, B.; Pawelec, G.; Falandry, C.; Wedding, U.; Lago, L.D.; Repetto, L.; Ring, A.; Wildiers, H. Evaluating the physiological reserves of older patients with cancer: The value of potential biomarkers of aging? J. Geriatr. Oncol. 2014, 5, 204–218. [Google Scholar] [CrossRef]
- Van Hoi, E.T.; Trompet, S.; Van Holstein, Y.; Bos, F.V.D.; Van Heemst, D.; Codrington, H.; Labots, G.; Lohman, S.; Ozkan, A.; Portielje, J.; et al. Toxicity in Older Patients with Cancer Receiving Immunotherapy: An Observational Study. Drugs Aging 2024, 41, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Helissey, C.; Vicier, C.; Champiat, S. The development of immunotherapy in older adults: New treatments, new toxicities? J. Geriatr. Oncol. 2016, 7, 325–333. [Google Scholar] [CrossRef]
- Pawelec, G.; Bronikowski, A.; Cunnane, S.C.; Ferrucci, L.; Franceschi, C.; Fulop, T.; Gaudreau, P.; Gladyshev, V.N.; Gonos, E.S.; Gorbunova, V.; et al. The conundrum of human immune system “senescence”. Mech. Ageing Dev. 2020, 192, 111357. [Google Scholar] [CrossRef]
- Gonnin, C.; Leemans, M.; Canoui-Poitrine, F.; Lebraud, M.; Corneau, A.; Roquebert, L.; Caillet, P.; Gay, P.; Canovas, J.; Histe, A.; et al. CD57(+) EMRA CD8(+) T cells in cancer patients over 70: Associations with prior chemotherapy and response to an-ti-PD-1/PD-L1 therapy. Immun. Ageing 2024, 21, 89. [Google Scholar] [CrossRef]
- Onyema, O.O.; DeCoster, L.; Njemini, R.; Forti, L.N.; Bautmans, I.; De Waele, M.; Mets, T. Chemotherapy-induced changes and immunosenescence of CD8+ T-cells in patients with breast cancer. Anticancer Res. 2015, 35, 1481–1489. [Google Scholar]
- Saraswat, I.; Goel, A. Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions. Curr. Pharm. Biotechnol. 2024, 26, 680–699. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, J.; Shin, S.; Ahn, J.; Lee, M.; Kim, H. The efficacy of immune checkpoint inhibitors in elderly patients: A meta-analysis and meta-regression. ESMO Open 2022, 7, 100577. [Google Scholar] [CrossRef] [PubMed]
- Takamori, S.; Shimokawa, M.; Komiya, T. Prognostic impact of chronological age on efficacy of immune checkpoint inhibitors in non-small-cell lung cancer: Real-world data from 86 173 patients. Thorac. Cancer 2021, 12, 2943–2948. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.; Charmsaz, S.; Tsai, H.-L.; Aziz, K.; Shu, D.H.; Munjal, K.; Griffin, E.; Leatherman, J.M.; Lipson, E.J.; Ged, Y.; et al. Age-related divergence of circulating immune responses in patients with solid tumors treated with immune checkpoint inhibitors. Nat. Commun. 2025, 16, 3531. [Google Scholar] [CrossRef]
- Khan, S.; Malladi, V.S.; von Itzstein, M.S.; Mu-Mosley, H.; Fattah, F.J.; Liu, Y.; E Gwin, M.; Park, J.Y.; Cole, S.M.; Bhalla, S.; et al. Innate and adaptive immune features associated with immune-related adverse events. J. Immunother. Cancer 2025, 13, e012414. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Conroy, M.; Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef]
- Jayathilaka, B.; Mian, F.; Franchini, F.; Au-Yeung, G.; Ijzerman, M. Cancer and treatment specific incidence rates of immune-related adverse events induced by immune checkpoint inhibitors: A systematic review. Br. J. Cancer 2025, 132, 51–57. [Google Scholar] [CrossRef]
- Baldini, C.; Romano, P.M.; Voisin, A.-L.; Danlos, F.-X.; Champiat, S.; Laghouati, S.; Kfoury, M.; Vincent, H.; Postel-Vinay, S.; Varga, A.; et al. Impact of aging on immune-related adverse events generated by anti-programmed death (ligand)PD-(L)1 thera-pies. Eur. J. Cancer 2020, 129, 71–79. [Google Scholar] [CrossRef]
- Esen, B.H.; Bektas, S.N.; Topcu, U.; Köylü, B.; Kuvvet, F.B.B.; Bahat, G.; Selçukbiricik, F. Immune-related adverse events in older adults receiving immune checkpoint inhibitors: A comprehensive analysis of the Food and Drug Administration Adverse Event Reporting System. Age Ageing 2025, 54, afaf008. [Google Scholar] [CrossRef]
- Nosaki, K.; Saka, H.; Hosomi, Y.; Baas, P.; de Castro, G.; Reck, M.; Wu, Y.-L.; Brahmer, J.R.; Felip, E.; Sawada, T.; et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer 2019, 135, 188–195. [Google Scholar] [CrossRef]
- Nebhan, C.A.; Cortellini, A.; Ma, W.; Ganta, T.; Song, H.; Ye, F.; Irlmeier, R.; Debnath, N.; Saeed, A.; Radford, M.; et al. Clinical Outcomes and Toxic Effects of Single-Agent Immune Checkpoint Inhibitors Among Patients Aged 80 Years or Older with Cancer: A Multicenter International Cohort Study. JAMA Oncol. 2021, 7, 1856–1861. [Google Scholar] [CrossRef]
- Ladjevardi, C.O.; Koliadi, A.; Rydén, V.; El-Naggar, A.I.; Digkas, E.; Valachis, A.; Ullenhag, G.J. Predicting immune-related adverse events using a simplified frailty score in cancer patients treated with checkpoint inhibitors: A retrospective cohort study. Cancer Med. 2023, 12, 13217–13224. [Google Scholar] [CrossRef]
- Kojima, S.; Inoue, Y.; Karayama, M.; Hashimoto, D.; Asada, K.; Matsuura, S.; Imokawa, S.; Matsui, T.; Matsuda, H.; Inami, N.; et al. Biological Aging and Survival Outcomes in Patients With Advanced Non-Small Cell Lung Cancer Receiving Systemic Therapy. Clin. Lung Cancer 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Onodera, R.; Chiba, S.; Nihei, S.; Fujimura, I.; Akiyama, M.; Utsumi, Y.; Nagashima, H.; Kudo, K.; Maemondo, M. High level of C-reactive protein as a predictive factor for immune-related adverse events of immune checkpoint inhibitors in non-small cell lung cancer: A retrospective study. J. Thorac. Dis. 2023, 15, 4237–4247. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ye, H.; Wang, J.; Liu, F.; Zhu, H.; Xie, G.; Pan, J. Comparison of immune-related adverse events and analysis of risk factors in older and younger rectal cancer patients receiving immunotherapy. Am. J. Cancer Res. 2025, 15, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Shin, S.-I.; Sun, P.; Lee, J.E.; Chung, C.; Kang, Y.E.; Kang, D.H.; Park, J. Single-cell RNA sequencing of baseline PBMCs predicts ICI efficacy and irAE severity in patients with NSCLC. J. Immunother. Cancer 2025, 13, e011636. [Google Scholar] [CrossRef]
- Pawelec, G.; E McElhaney, J.; E Aiello, A.; Derhovanessian, E. The impact of CMV infection on survival in older humans. Curr. Opin. Immunol. 2012, 24, 507–511. [Google Scholar] [CrossRef]
- Milotay, G.; Little, M.; Watson, R.A.; Muldoon, D.; MacKay, S.; Kurioka, A.; Tong, O.; Taylor, C.A.; Nassiri, I.; Webb, L.M.; et al. CMV serostatus is associated with improved survival and delayed toxicity onset following anti-PD-1 checkpoint blockade. Nat. Med. 2025, 31, 2350–2364. [Google Scholar] [CrossRef]
- Mac Eochagain, C.; Neuendorff, N.R.; Gente, K.; Leipe, J.; Verhaert, M.; Sam, C.; de Glas, N.; Kadambi, S.; Canin, B.; Gomes, F.; et al. Management of immune checkpoint inhibitor-associated toxicities in older adults with cancer: Recommendations from the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 2025, 26, e90–e102. [Google Scholar] [CrossRef]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Gesierich, A.; Demeter, E.; Schilling, B.; Deschler-Baier, B. More than age: Impact of comorbidity and polypharmacy on im-mune-related adverse events, treatment discontinuation, and toxicity management in older patients receiving immune checkpoint inhibitors. J. Geriatr. Oncol. 2025, 17, 102813. [Google Scholar] [CrossRef] [PubMed]
- Lens, M.; Schachter, J. Immune Checkpoint Inhibitors in the Treatment of Advanced Melanoma in Older Patients: An Overview of Published Data. Cancers 2025, 17, 1835. [Google Scholar] [CrossRef]
- Bruijnen, C.P.; Koldenhof, J.J.; Verheijden, R.J.; Bos, F.v.D.; Emmelot-Vonk, M.H.; Witteveen, P.O.; Suijkerbuijk, K.P.M. Frailty and checkpoint inhibitor toxicity in older patients with melanoma. Cancer 2022, 128, 2746–2752. [Google Scholar] [CrossRef]
- Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020, 18, 87. [Google Scholar] [CrossRef]
- Hersh, L.R.; Beldowski, K.; Hajjar, E.R. Polypharmacy in the Geriatric Oncology Population. Curr. Oncol. Rep. 2017, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Lorigan, P.; Woolley, S.; Foden, P.; Burns, K.; Yorke, J.; Blackhall, F. A prospective cohort study on the safety of checkpoint inhibitors in older cancer patients—The ELDERS study. ESMO Open 2021, 6, 100042. [Google Scholar] [CrossRef]
- Wildiers, H.; Heeren, P.; Puts, M.; Topinkova, E.; Janssen-Heijnen, M.L.; Extermann, M.; Falandry, C.; Artz, A.; Brain, E.; Colloca, G.; et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J. Clin. Oncol. 2014, 32, 2595–2603. [Google Scholar] [CrossRef]
- Goede, V. Frailty and Cancer: Current Perspectives on Assessment and Monitoring. Clin. Interv. Aging 2023, 18, 505–521. [Google Scholar] [CrossRef]
- Ethun, C.G.; Bilen, M.A.; Jani, A.B.; Maithel, S.K.; Ogan, K.; Master, V.A. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J. Clin. 2017, 67, 362–377. [Google Scholar] [CrossRef]
- Williams, G.R.; Deal, A.M.; Lund, J.L.; Chang, Y.; Muss, H.B.; Pergolotti, M.; Guerard, E.J.; Shachar, S.S.; Wang, Y.; Kenzik, K.; et al. Patient-Reported Comorbidity and Survival in Older Adults with Cancer. Oncol. 2018, 23, 433–439. [Google Scholar] [CrossRef]
- Pinker, I.; Wetzlmair-Kephart, L.; da Costa, A.M.; Pilleron, S. The role of healthcare professionals’ attitudes in treatment deci-sion-making for older adults with cancer: A scoping review. J. Geriatr. Oncol. 2024, 16, 102151. [Google Scholar] [CrossRef]
- Cheng, J.J.; Azizoddin, A.M.; Maranzano, M.J.; Sargsyan, N.; Shen, J. Polypharmacy in Oncology. Clin. Geriatr. Med. 2022, 38, 705–714. [Google Scholar] [CrossRef]
- Santos, C.S.; Amorim-Lopes, M. Externally validated and clinically useful machine learning algorithms to support pa-tient-related decision-making in oncology: A scoping review. BMC Med. Res. Methodol. 2025, 25, 45. [Google Scholar] [CrossRef] [PubMed]
- Scotté, F.; Bossi, P.; Carola, E.; Cudennec, T.; Dielenseger, P.; Gomes, F.; Knox, S.; Strasser, F. Addressing the quality of life needs of older patients with cancer: A SIOG consensus paper and practical guide. Ann. Oncol. 2018, 29, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Skelly, A.; O’DOnovan, A. Recognizing Frailty in Radiation Oncology Clinical Practice: Current Evidence and Future Direc-tions. Semin. Radiat. Oncol. 2022, 32, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, B.E.G.; Quest, T.E.; Yeung, S.J.; Pelosof, L.C.; Gerber, D.E.; Seltzer, J.A.; Bischof, J.J.; Thomas, C.R.; Akhter, N.; Mamtani, M.; et al. Oncologic emergencies and urgencies: A comprehensive review. CA Cancer J. Clin. 2022, 72, 570–593. [Google Scholar] [CrossRef]
- Cil, E.; Gomes, F. Toxicity of Cancer Immunotherapies in Older Patients: Does Age Make a Difference? Drugs Aging 2024, 41, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.L.; Amin, A.; Bari, S.; Poonnen, P.J.; Khasraw, M.; Johnson, M.O. Immune Checkpoint Inhibitors in Geriatric On-cology. Curr. Oncol. Rep. 2024, 26, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Shouse, G.; Danilov, A.V.; Artz, A. CAR T-Cell Therapy in the Older Person: Indications and Risks. Curr. Oncol. Rep. 2022, 24, 1189–1199. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Oze, I.; Kato, Y.; Kubo, T.; Ichihara, E.; Rai, K.; Ohashi, K.; Kozuki, T.; Tabata, M.; Maeda, Y.; et al. Influence of age on the efficacy of immune checkpoint inhibitors in advanced cancers: A systematic review and meta-analysis. Acta Oncol. 2020, 59, 249–256. [Google Scholar] [CrossRef]
- Mäkinen, V.-P.; Ala-Korpela, M. Influence of age and sex on longitudinal metabolic profiles and body weight trajectories in the UK Biobank. Int. J. Epidemiol. 2024, 53, dyae055. [Google Scholar] [CrossRef]
- Laird, B.J.; Skipworth, R.J. The Obesity Paradox in Cancer: Is Bigger Better? J. Cachexia Sarcopenia Muscle 2022, 13, 1440–1441. [Google Scholar] [CrossRef]
- Mendis, S.; Graham, I.; Branca, F.; Collins, T.; Tukuitonga, C.; Gunawardane, A.; Narula, J. Alarming Rise of Obesity: The 4th United Nations High-Level Meeting on Noncommunicable Diseases and Mental Health Should Advance Action to Tackle Obesity. Glob. Heart 2025, 20, 70. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Clements, V.K.; Long, T.; Long, R.; Figley, C.; Smith, D.M.C.; Ostrand-Rosenberg, S. Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J. Leukoc. Biol. 2018, 103, 395–407. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018, 51, 68–75. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, B.; Kang, J.; Li, A.; Sun, J. Obesity Promotes Tumor Immune Evasion in Ovarian Cancer Through Increased Production of Myeloid-Derived Suppressor Cells via IL-6. Cancer Manag. Res. 2021, 13, 7355–7363. [Google Scholar] [CrossRef] [PubMed]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wang, D.Y.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef]
- Albiges, L.; Hakimi, A.A.; Xie, W.; McKay, R.R.; Simantov, R.; Lin, X.; Lee, J.-L.; Rini, B.I.; Srinivas, S.; Bjarnason, G.A.; et al. Body Mass Index and Metastatic Renal Cell Carcinoma: Clinical and Biological Correlations. J. Clin. Oncol. 2016, 34, 3655–3663. [Google Scholar] [CrossRef]
- Boi, S.K.; Orlandella, R.M.; Gibson, J.T.; Turbitt, W.J.; Wald, G.; Thomas, L.; Rosean, C.B.; E Norris, K.; Bing, M.; Bertrand, L.; et al. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J. Immunother. Cancer 2020, 8, e000725. [Google Scholar] [CrossRef]
- Wang, K.-X.; Shi, D.-M.; Shi, X.-L.; Wang, J.-Y.; Ai, X.-H. Obesity promotes immunotherapy efficacy by up-regulating the glyco-lytic-mediated histone lactacylation modification of CD8+ T cells. Front. Pharmacol. 2025, 16, 1533464. [Google Scholar] [CrossRef]
- Auro, K.; Joensuu, A.; Fischer, K.; Kettunen, J.; Salo, P.; Mattsson, H.; Niironen, M.; Kaprio, J.; Eriksson, J.G.; Lehtimäki, T.; et al. A metabolic view on menopause and ageing. Nat. Commun. 2014, 5, 4708. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Yang, Q.; Shi, M.; Zhong, L.; Wu, C.; Meng, T.; Yin, H.; Zhou, J. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 2013, 43, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Monfardini, S.; Perrone, F.; Balducci, L. Pitfalls in Oncogeriatrics. Cancers 2023, 15, 2910. [Google Scholar] [CrossRef]
- Desideri, I.; Salvestrini, V.; Livi, L. Recent advances in de-intensification of radiotherapy in elderly cancer patients. F1000Research 2020, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Verri, F.M.; González-Senac, N.M.; Herledan, C.; Bos, F.v.D.; Neuendorff, N.R. From healthy aging to complex needs in older adults: Onco-geriatric insights from the EuGMS 2024 conference, a report from Young SIOG. J. Geriatr. Oncol. 2025, 16, 102156. [Google Scholar] [CrossRef] [PubMed]
- González-Senac, N.M.; Rodríguez-Couso, M. Reflecting on oncogeriatrics: What can be done to promote the integration of the comprehensive geriatric assessment in the oncology practice? Rev. Esp. Geriatr. Gerontol. 2023, 58, 121–122. [Google Scholar] [CrossRef]
- Fusco, D.; Ferrini, A.; Pasqualetti, G.; Giannotti, C.; Cesari, M.; Laudisio, A.; Ballestrero, A.; Scabini, S.; Odetti, P.R.; Colloca, G.F.; et al. Comprehensive geriatric assessment in older adults with cancer: Recommendations by the Italian Society of Geriatrics and Gerontology (SIGG). Eur. J. Clin. Investig. 2021, 51, e13347. [Google Scholar] [CrossRef]
- Extermann, M.; Al-Jumayli, M.; Sam, C.; Kish, J.A. Oncogeriatric Developments. Gerontology 2023, 69, 1045–1055. [Google Scholar] [CrossRef]
- Guerin, A.; ap Thomas, Z.; Nagera-Lazarovici, C.; Beraud-Chaulet, G.; Iacob, M.; Canoui-Poitrine, F.; Paillaud, E.; Baldini, C.; Pagès, A.; Frélaut, M. Comprehensive geriatric assessment and early treatment failure in nonagenarian patients with cancer, a retrospective monocentric study. Cancer Epidemiol. 2025, 97, 102830. [Google Scholar] [CrossRef] [PubMed]
- Whelehan, S.; Lynch, O.; Treacy, N.; Gleeson, C.; Oates, A.; O’donovan, A. Optimising Clinical Trial Design in Older Cancer Patients. Geriatrics 2018, 3, 34. [Google Scholar] [CrossRef]
- Diebel, L.W.M.; Rockwood, K. Determination of Biological Age: Geriatric Assessment vs Biological Biomarkers. Curr. Oncol. Rep. 2021, 23, 104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pawelec, G.; Ostrand-Rosenberg, S.; Fülöp, T.; Van Leemput, F.; Verschoor, C.P. Cancer Characteristics and Immunotherapy in Older Adults: Treatment Approaches, Immune-Related Adverse Events, and Management Considerations. Onco 2026, 6, 7. https://doi.org/10.3390/onco6010007
Pawelec G, Ostrand-Rosenberg S, Fülöp T, Van Leemput F, Verschoor CP. Cancer Characteristics and Immunotherapy in Older Adults: Treatment Approaches, Immune-Related Adverse Events, and Management Considerations. Onco. 2026; 6(1):7. https://doi.org/10.3390/onco6010007
Chicago/Turabian StylePawelec, Graham, Suzanne Ostrand-Rosenberg, Tamas Fülöp, Flore Van Leemput, and Chris P. Verschoor. 2026. "Cancer Characteristics and Immunotherapy in Older Adults: Treatment Approaches, Immune-Related Adverse Events, and Management Considerations" Onco 6, no. 1: 7. https://doi.org/10.3390/onco6010007
APA StylePawelec, G., Ostrand-Rosenberg, S., Fülöp, T., Van Leemput, F., & Verschoor, C. P. (2026). Cancer Characteristics and Immunotherapy in Older Adults: Treatment Approaches, Immune-Related Adverse Events, and Management Considerations. Onco, 6(1), 7. https://doi.org/10.3390/onco6010007

